首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用ZrO_2对正极材料LiNi_(0.5)Mn_(1.5)O_4进行包覆以提高材料的电化学性能,通过X射线衍射(XRD)、扫描电子显微镜(SEM)等测试手段表征ZrO_2包覆后材料的结构和形貌,通过电化学测试手段对包覆后的正极材料进行电化学性能分析,将测试结果与原相正极材料LiNi_(0.5)Mn_(1.5)O_4进行对比得到:ZrO_2包覆量为1.5%(质量分数)的样品表现出更高的放电比容量、更好的倍率性能以及更好的放电比容量保持率,在0.2 C放电倍率下材料的放电比容量首次表现可达129.5m Ah/g,在0.5 C放电倍率下经过50次循环后材料的容量保持率仍然高达95.4%;电化学循环伏安测试结果显示不同ZrO_2包覆量所制备的材料均具有4.7和4.0 V两个放电平台,材料属于Fd-3m空间群尖晶石结构。  相似文献   

2.
利用溶胶-凝胶法在LiNi1/3Co1/3Mn1/3O2颗粒表面包覆一层纳米级厚度的Al2O3,提高了其高截止电压下的循环性能和倍率性能。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜法(TEM)对所制备材料进行结构和微观形貌表征,通过充放电测试对材料的电化学性能进行分析。结果表明:Al2O3包覆层对材料的结构和微观形貌没有影响;Al2O3的最佳包覆量为2.0%(质量分数),此时包覆层的厚度为20~30 nm。在2.8~4.5 V电压范围内,未包覆的LiNi1/3Co1/3Mn1/3O2在0.2 C时的首次放电比容量为175 m Ah/g,50次循环后容量保持率只有91.8%;经Al2O3包覆的LiNi1/3Co1/3Mn1/3O2在0.2 C下,首次放电比容量达到181 m Ah/g,经50次循环后容量保持率仍可达到97.4%,且在5 C放电条件下,其放电比容量可达152 m Ah/g,显示了该包覆材料在高能量密度长寿命锂离子电池中将具有很大的应用潜力。  相似文献   

3.
将层状的LiNi1/3Co1/3Mn1/3O2锂离子电池正极材料与尖晶石型的LiMn2O4按质量比为2∶98混合烧结,采用X射线衍射(XRD)、循环伏安法(CV)、交流阻抗(EIS)以及充放电测试研究LiMn2O4对LiNi1/3Co1/3Mn1/3O2电化学性能的影响。研究表明混合LiMn2O4有利于提高LiNi1/3Co1/3Mn1/3O2正极材料的首次库仑效率、循环性能和倍率性能,在3.0~4.3 V以1 C循环,首次放电比容量和库仑效率分别为150.3 m Ah/g和85.5%,循环50次后容量保持率为88.9%;在5 C下充放电仍保持136.2 m Ah/g。循环伏安与交流阻抗测试表明混合2%(质量分数)LiMn2O4可以提升材料的可逆性和放电容量,降低电荷转移电阻。  相似文献   

4.
采用不同钠源在醋酸盐燃烧下合成P2结构的Na_(2/3)Ni_(1/3)Mn_(2/3)O_2正极材料。通过XRD、SEM及循环伏安、电化学阻抗谱等测试,分析钠源对材料结构、形貌及电化学性能的影响。以碳酸钠为钠源合成的样品的层状结构较好、颗粒粒径较均一,电化学性能最好。该材料以0.1 C在2.0~4.0 V循环,首次放电比容量为89.8 m Ah/g,库仑效率为123.3%。1.0 C首次放电比容量为74.3 m Ah/g,第50次循环的放电比容量为71.1 m Ah/g,容量保持率为95.7%。  相似文献   

5.
刘开宇  张伟  苏耿  张莹 《电池》2006,36(3):208-209
采用机械合金化的方法制备了碳纳米管(CNTs)与LaNi5合金粉的复合贮氢材料,考察了球磨时间对复合材料微观结构及电化学性能的影响。球磨时间越长,CNTs断裂程度越高;球磨后,复合材料具有好的活化过程,并保持了相对较高的放电容量,1C放电容量为311 mAh/g(5%CNTs),3C放电容量为244 mAh/g(10%CNTs)。  相似文献   

6.
通过简单的湿法球磨混合工艺,经过低温热处理得到Co3O4修饰Li4Ti5O12复合材料。通过X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射光谱(EDS)、恒电流充放电测试、循环伏安(CV)以及交流阻抗(EIS)对材料的结构、形貌、组成及电化学性能进行表征。结果表明,Co3O4修饰没有改变Li4Ti5O12的尖晶石结构,以小颗粒的形式分布在材料中。Co3O4修饰增强了材料的电化学活性,减小了电极极化,使得材料的电化学性能得到提高。其中1%(质量分数)的Co3O4修饰Li4Ti5O12显示出较好的倍率性能和循环稳定性,0.2 C下的首次放电比容量为174 m Ah/g,2 C下循环300次后比容量为128.2 m Ah/g,容量保持率为95.6%。  相似文献   

7.
通过机械球磨和喷雾干燥-热解法制得Si/C复合负极材料,借助X射线衍射(XRD)、扫描电镜(SEM)和电化学性能测试等手段,研究了工艺参数喷雾压力对合成材料结构、形貌和性能的影响。结果表明:喷雾压力为0.25 MPa所制得的Si/C复合材料具有较优的综合电化学性能,当电流密度为100 mA/g时充放电,首次放电比容量可以达到687.0mAh/g,首次充放电效率为78.2%;30周循环后的放电比容量仍有619.8 mAh/g,容量保持率达到90.2%。  相似文献   

8.
贺诗阳  刘宇  张书明  张娜  贺健 《电源技术》2017,(11):1561-1564
通过固相法合成了具有典型NASICON结构的NaTi_2(PO_4)_3/C复合材料,碳质量分数为5%。以该材料为负极,以制备的λ-MnO_2为正极,在1 mol/L的Na_2SO_4水溶液中测试了NaTi_2(PO_4)_3/C复合材料的电化学性能。结果表明:在0.1C下该材料的比容量达到82 mAh/g;在1.5C下初始比容量达到54 mAh/g,500次循环后为48 mAh/g,容量保持率为88.9%。NaTi_2(PO_4)_3/C材料具有优良的循环性能和倍率特性,且材料的制备工艺简单,绿色环保,作为水系钠离子电池的负极具有较好的应用前景。  相似文献   

9.
碳包覆硅/碳复合材料的制备与性能研究   总被引:1,自引:0,他引:1  
为提高锂离子电池商容量Si/C复合负极材料的电化学性能,采用喷雾干燥法制备了核壳结构的碳包覆Si/C复合材料.碳包覆Si/C复合材料为近球形颗粒,形貌规整,粒度分布均匀,呈正态分布,其物相结构和嵌脱锂的电化学反应与Si/C复合材料保持一致.碳包覆后,减小了充放电过程中复合材料电极的极化,电压滞后现象得到了显著的改善.碳包覆Si/C复合材料的最大放电比容量为512 mAh/g,略低于包覆前的材料,但循环稳定性大大提高,50次循环后的容量保持率为96%.  相似文献   

10.
张伟  刘开宇  张莹  苏耿 《电源技术》2007,31(6):488-490
采用机械球磨法制备出不同碳纳米管(CNTs)含量的LaNi5合金复合储氢材料.考察了不同CNTs含量下复合储氢材料的微观结构及电化学储氢性能的影响.结果发现CNTs的加入不同程度地改善了复合材料的性能.其中质量分数为15%CNTs含量的复合材料比容量达到了311 mAh/g,比LaNi5母合金比容量提高了21%,经过200次循环后放电比容量仍高达280 mAh/g,表现出良好的协同作用和循环性能.  相似文献   

11.
选用三元材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2为正极材料,中间相炭微球为负极材料,制备了额定容量为10 Ah的铝壳锂离子动力电池,并对电池的电性能和安全性能进行了相关测试。电性能包括充放电性能、倍率性能、循环性能和自放电,实验结果表明,电池表现出了良好的倍率性能,1 C、2 C的放电容量分别为0.5 C放电容量的97.49%、93.70%;在2.7~4.2V电压范围内,电池1 C循环400次后容量保持率为101.77%;电池满电常温搁置28天后容量保持率为97.06%。针刺、短路、过充电和自有跌落测试结果表明电池具有良好的安全性能。  相似文献   

12.
研究试验了锂离子蓄电池的不同电极材料及电极成型工艺 ,分别制成了以氧化钴锂 (LiCoO2 )和氧化镍钴锂(LiNi0 .8Co0 .2 O2 )为正极 ,中间相炭微珠 (MCMB)为负极的 186 5 0型锂离子蓄电池。电池的放电容量分别大于 15 5 0mAh和 170 0mAh。电池比能量达到了 130Wh/kg和 35 0Wh/L。在室温条件下 ,0 .5C电池的循环寿命 10 0 0次时 ,其容量仍为初始容量的 6 0 %、70 %。以氧化钴锂为正极的电池在 -4 0℃、0 .2C速率、终止电压 2 .5V的条件下 ,放电容量为室温容量的 6 0 %。实验结果表明 ,电池安全可靠。  相似文献   

13.
MH-Ni电池高倍率循环寿命影响因素探讨   总被引:6,自引:0,他引:6  
D型MH-Ni电池1 C率100% DOD放电303周期后,电池放电容量降低29.9%,电池的内阻增大155%,放电30 min时电池端电压降低8.4%。对循环前后电池进行对比实验,发现循环后电池放电至1.0 V时,其负极的电极电位降低为-750 mV(vs.HgO/Hg电极),而未循环的为-854 mV(vs.HgO/Hg电极);P-C-T实验结果表明,循环后电池中的合金电化学容量只有129.4 mAh/g,而未循环的为279.7 mAh/g,这两者说明电池循环后负极中的合金贮氢能力已大大下降。通过对循环前后电池正、负极活性物质的扫描电镜实验、粒度分布测试及X射线衍射实验等进行分析,证实电池经循环后失效的主要原因是因为负极活性物质的腐蚀、粉化和氧化。  相似文献   

14.
王正强 《电源技术》2017,(11):1584-1585,1592
采用烧结镍为正极,添加氧化亚钴和羰基镍粉的储氢材料为负极,聚乙烯(PE)/聚丙烯(PP)的复合物为隔膜,制备得到通信设备用富液式QNG90方形氢镍电池,对所得电池充放电时的温度变化及电化学性能进行测试,并与贫液式QNF90方形氢镍电池进行比较。当富液式电池以0.2 C充电6 h,温升为5.0℃;以1.0 C放电,温升为9.5℃。20℃下对电池进行倍率放电与低温放电测试结果表明,当富液式电池以10.0 C放电至0.8 V的放电容量为室温0.2 C放电容量的73.4%,-40℃下以0.2 C放电时容量为常温0.2 C放电容量的75.2%,50℃下满容量电池以1.436 V恒压浮充50 h,未出现热失控和电流失控,0.2 C充放电的循环次数超过1 100次。  相似文献   

15.
以高镍含量镍钴锰氢氧化物、氢氧化锂为原料,采用高温固相法合成锂离子电池正极材料LiNi_(0.8)Co_(0.1)Mn_(0.1)O_2(NCM811)。温度为750~850℃、n(Li)∶n(Ni+Co+Mn)为1.02∶1.00~1.08∶1.00,合成的NCM811材料保持纯相,但材料中残留的碱性杂质仍然较多。通过引入磷酸二氢铵、纯水淋洗等手段,可较为简便地处理残留的碱性杂质。与未处理的相比,淋洗降碱后的样品在3.0~4.3 V充放电,0.5 C、1.0 C及2.0 C倍率性能约有1%的降低,但0.1 C首次充放电效率由89.1%上升到93.0%,1.0 C放电比容量由179.2 m Ah/g上升为181.8 m Ah/g,循环100次,容量保持率由90.8%上升到94.1%。  相似文献   

16.
主要以聚乙烯为隔膜,锰酸锂(Li Mn2O4)、钛酸锂(Li4Ti5O12)为电池正负极的活性物质制备得到12 Ah软包装锂离子电池。通过选择合适的电解液配方及电极材料,并对制作工艺优化后制备可得实验电池。在1.6~2.8 V下对电池进行充放电实验发现,常温下以4.00 C循环5 000次时,电池的容量保持率仍大于96%;以0.50 C放电时,高温下其容量约为常温下的108.0%;最高脉冲放电比率为2 238 W/kg。  相似文献   

17.
研究锰酸锂电池防过充性能与电解液中添加环己基苯(CHB)之间的关系,对加入CHB后电池的容量及循环性能的变化情况进行分析。为了确定添加剂防过充的机理,通过扫描电镜、红外光谱结合计算机图像对电池正极的表面形貌及产物进行分析。研究结果表明,CHB的防过充机理为阻断机理,向电解液中加入CHB的质量分数为2%时,电池的耐过充性能可明显提高,在3 C/10 V的极端条件下电池不会发生起火及爆炸等现象,当循环100周后,其容量保持率仍高达93.45%。  相似文献   

18.
采用液相共沉淀法制备了掺杂Bi_2O_3的锌酸钙粉末。X射线衍射测试表明,共沉淀的Bi没有进入锌酸钙的晶格而是以Bi_2O_3的形式析出并部分沉积在锌酸钙表面。恒电流充放电测试结果表明,Bi_2O_3在首次充电时能够转化为金属Bi并稳定存在于锌酸钙电极中。与未掺杂电极相比,掺杂10%(质量分数)Bi_2O_3后,锌酸钙电极的0.2 C比容量由391m Ah/g提高至433 m Ah/g,1 C比容量由372 m Ah/g提高至389 m Ah/g,3 C比容量由312 m Ah/g提高至330 m Ah/g,1 C循环30次后容量保持率由61%提高到92%。  相似文献   

19.
将荷电态(SOC)为2%(剩余电量为0.1 Ah)的石墨/LiFePO_4锂离子电池分别在不同温度(25℃、50℃、60℃和70℃)下存储6 h,测试常温/高温荷电保持能力、低温(-20℃)放电和常温1 C循环(2.50~3.65 V)性能。电池的常温/高温荷电保持能力和低温(-20℃)放电性能均随存储温度的升高先增强、后减弱,经60℃存储后,电池的上述性能最优;在常温下1 C循环1 500次后,高温(≥50℃)存储后电池的容量保持率约为88%。  相似文献   

20.
锂离子电池的低温性能是制约锂离子电池发展的重要因素之一。研究了负极中掺杂20%软碳的电池样品在低温条件下的倍率充电性能、低温放电性能及低温循环性能。实验结果表明,负极掺杂20%软碳的锂离子电池,-10、-20℃充电容量分别能达到25℃时充电容量的91.11%和81.74%;-20℃循环50次,剩余容量为低温初始容量的91.91%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号