首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a distributed smooth time-varying feedback control law for coordinating motions of multiple nonholonomic mobile robots of the Hilare-type to capture/enclose a target by making troop formations. This motion coordination is a cooperative behavior for security against invaders in surveillance areas. Each robot in this control law has its own coordinate system and it senses a target/invader, other robots and obstacles, to achieve this cooperative behavior without making any collision. Each robot especially has a two-dimensional control input referred to as a “formation vector” and the formation is controllable by the vectors. The validity of this control law is supported by computer simulations.  相似文献   

2.
In this paper, we investigate the output consensus problem of tracking a desired trajectory for a class of systems consisting of multiple nonlinear subsystems with intrinsic mismatched unknown parameters. The subsystems are allowed to have non-identical dynamics, whereas with similar structures and the same yet arbitrary system order. And the communication status among the subsystems can be represented by a directed graph. Different from the traditional centralized tracking control problem, only a subset of the subsystems can obtain the desired trajectory information directly. A distributed adaptive control approach based on backstepping technique is proposed. By introducing the estimates to account for the parametric uncertainties of the desired trajectory and its neighbors’ dynamics into the local controller of each subsystem, information exchanges of online parameter estimates and local synchronization errors among linked subsystems can be avoided. It is proved that the boundedness of all closed-loop signals and the asymptotically consensus tracking for all the subsystems’ outputs are ensured. A numerical example is illustrated to show the effectiveness of the proposed control scheme. Moreover, the design strategy is successfully applied to solve a formation control problem for multiple nonholonomic mobile robots.  相似文献   

3.
This paper presents a formal framework for verifying distributed embedded systems. An embedded system is described as a set of concurrent real time functions which communicate through a network of interconnected switches involving messages queues and routing services.In order to allow requirements verification, such a model is then translated into timed automata. However, the complexity inherent in distributed embedded systems often does not allow to apply model checking techniques. Consequently, the paper presents an abstraction-based verification method which consists in abstracting the communication network by end-to-end timed channels. To prove a given safety property φ requires then (1) to prove a set of proof obligations ensuring the correctness of the abstraction step (i.e. the end-to-end channels correctly abstract the network), and (2) to prove φ at the abstract level. The expected advantage of such a method lies in the ability to overcome the combinatorial explosion frequently met when verifying complex systems. This method is illustrated by an avionic case study.  相似文献   

4.
Inspired by the new achievements in mobile robotics having as a result mobile robots able to execute different production tasks, we consider a factory producing a set of distinct products via or with the additional help of mobile robots. This particularly flexible layout requires the definition and the solution of a complex planning and scheduling problem. In order to minimize production costs, dynamic determination of the number of robots for each production task and the individual robot allocation are needed. We propose a solution in terms of a two-level decentralized Multi-Agent System (MAS) framework: at the first, production planning level, agents are tasks which compete for robots (resources at this level); at the second, scheduling level, agents are robots which reallocate themselves among different tasks to satisfy the requests coming from the first level. An iterative auction based negotiation protocol is used at the first level while the second level solves a Multi-Robot Task Allocation (MRTA) problem through a distributed version of the Hungarian Method. A comparison of the results with a centralized approach is presented.  相似文献   

5.
In systems coordinated with a distributed set of tuple spaces, it is crucial to assist agents in retrieving the tuples they are interested in. This can be achieved by sorting techniques that group similar tuples together in the same tuple space, so that the position of a tuple can be inferred by similarity. Accordingly, we formulate the collective sort problem for distributed tuple spaces, where a set of agents is in charge of moving tuples up to a complete sort has been reached, namely, each of the N tuple spaces aggregate tuples belonging to one of the N kinds available. After pointing out the requirements for effectively tackling this problem, we propose a self-organizing solution resembling brood sorting performed by ants. This is based on simple agents that perform partial observations and accordingly take decisions on tuple movement. Convergence is addressed by a fully adaptive method for simulated annealing, based on noise tuples inserted and removed by agents on a need basis so as to avoid sub-optimal sorting. Emergence of sorting properties and scalability are evaluated through stochastic simulations.  相似文献   

6.
This paper deals with the implementation of emotions in mobile robots performing a specified task in a group in order to develop intelligent behavior and easier forms of communication. The overall group performance depends on the individual performance, group communication, and the synchronization of cooperation. With their emotional capability, each robot can distinguish the changed environment, can understand a colleague robot’s state, and can adapt and react with a changed world. The adaptive behavior of a robot is derived from the dominating emotion in an intelligent manner. In our control architecture, emotion plays a role to select the control precedence among alternatives such as behavior modes, cooperation plans, and goals. Emotional interaction happens among the robots, and a robot is biased by the emotional state of a colleague robot in performing a task. Here, emotional control is used for a better understanding of the colleague’s internal state, for faster communication, and for better performance eliminating dead time. This work was presented in part at the 12th International Symposium on Artificial Life and Robotics, Oita, Japan, January 25–27, 2007  相似文献   

7.
The control system of a mobile robot has a number of issues to deal with in real time, including motion control, mapping, localization, path planning, and sensor processing. Intelligent reasoning, task-oriented behaviors, human–robot interfaces, and communications add more tasks to be solved. This naturally leads to a complex hierarchical control system where various tasks have to be processed concurrently. Many low-level tasks can be handled by a robots onboard (host) computer. However, other tasks, such as speech recognition or vision processing, are too computationally intensive for one computer to process. In this case, it is better to consider a distributed design for the control system in networked environments. In order to achieve maximum use of the distributed environment, it is important to design and implement the distributed system and its communication mechanisms in an effective and flexible way. This article describes our approach to designing and implementing a distributed control system for an intelligent mobile robot. We present our implementation of such a distributed control system for a prototype mobile robot. We focus our discussion on the system architecture, distributed communication mechanisms, and distributed robot control.This work was presented, in part, at the 8th International Symposium on Artificial Life and Robotics, Oita, Japan, January 24–26, 2003  相似文献   

8.
In large-scale distributed information systems, where participants are autonomous and have special interests for some queries, query allocation is a challenge. Much work in this context has focused on distributing queries among providers in a way that maximizes overall performance (typically throughput and response time). However, preserving the participants’ interests is also important. In this paper, we make the following contributions. First, we provide a model to define the participants’ perception of the system regarding their interests and propose measures to evaluate the quality of query allocation methods. Then, we propose a framework for query allocation called Satisfaction-based Query Load Balancing (SQLB, for short), which dynamically trades consumers’ interests for providers’ interests based on their satisfaction. Finally, we compare SQLB, through experimentation, with two important baseline query allocation methods, namely Capacity based and Mariposa-like. The results demonstrate that SQLB yields high efficiency while satisfying the participants’ interests and significantly outperforms the baseline methods. Work partially funded by ARA “Massive Data” of the French ministry of research (Respire project) and the European Strep Grid4All project.  相似文献   

9.
In this paper we address the problem of synthesizing simple rules and local interactions at the individual level so that pre-specified complex behavior emerges at the group level of a collection of autonomous mobile agents. Usually, the emergent collective behavior is used to perform certain spatial group-tasks. Specifically, we consider self-assembling of a group of mobile robots into grid, line, and wedge patterns. We introduce the notion of local-templates in which each mobile agent – capable of simple forward/backward movements and a clock-wise/counter clock-wise spin – actively encodes distinctive information into multiple non-overlapping sectorial regions of the surrounding environment in order to form pose-specific virtual links with similar minimalist agents in a local neighborhood. The resulting local patterns around each agent lead to the desired global formation. In order to take mobile robots closer to their biological counterparts, there is a need to further simplify the manner in which they currently perceive their surroundings, communicate with their neighbors, and compute their actions. We have built a robotic platform consisting of four wheeled-mobile robots that are christened as Kinbots. They are similar in principle to Braitenberg Vehicles and use simple perception/interaction/actuation techniques to achieve individual vehicle complexity and produce effective group behavior through cooperation. To validate the proposed approach, we demonstrate a column-formation task in computer simulations and physical experiments. We illustrate an experiment which is representative of various prominent stages in a group-formation task such as formation-achievement, maintenance, and response of formation movement to the presence of obstacles.  相似文献   

10.
In a typical distributed computing system (DCS), nodes consist of processing elements, memory units, shared resources, data files, and programs. For a distributed application, programs and data files are distributed among many processing elements that may exchange data and control information via communication link. The reliability of DCS can be expressed by the analysis of distributed program reliability (DPR) and distributed system reliability (DSR). In this paper, two reliability measures are introduced which are Markov-chain distributed program reliability (MDPR) and Markov-chain distributed system reliability (MDSR) to accurately model the reliability of DCS. A discrete time Markov chain with one absorbing state is constructed for this problem. The transition probability matrix is employed to represent the transition probability from one state to another state in a unit of time. In addition to mathematical method to evaluate the MDPR and MDSR, a simulation result is also presented to prove its correction.  相似文献   

11.
Emerging distributed applications increasingly require adequate tools and techniques for system- and application-level management. The integration of both aspects in an overall system framework is an important issue. This paper presents such a framework supporting advanced distributed applications in the context of the evolving Open Distributed Processing reference model. For system-level communication, an efficient subsystem providing advanced service capabilities is presented to cope with the increasing diversity of application service requirements. For application-level processing, a distributed object-based environment is offered. It implements location-independent invocation and object mobility and provides a high level of distribution transparency. The approach is augmented with tools and techniques for managing an overall application configuration.  相似文献   

12.
13.
In previous work on collective synchronization of multi-agents, they always follow the assumptions that the synchronization is flat where all agents have the same synchronization capacity and the final synchronization result always converges on a common average strategy. However, in many circumstances the above assumption does not match the peculiarities of real multi-agent societies where each agent plays a different role in the synchronization. To make up the restrictions of related work, this paper presents a non-flat synchronization model where the synchronization capacity of each agent is different regarding its social rank and strategy dominance. In the presented model, all agents are situated in a synchronization field where each agent can sense the collective synchronization forces from other agents; if some agents are more prominent than other ordinary agents (e.g., they have the dominance of social ranks or behavior strategies), they will have strong synchronization capacities in the field; and finally the collective synchronization results may incline to converge at such prominent agents' strategies, which is called prominence convergence in collective synchronization and can be proved by our theoretical analyses and experimental results.  相似文献   

14.
基于传感器信息的智能移动机器人导航评述   总被引:5,自引:3,他引:5  
导航是研究智能移动机器人技术中的一个重要领域,对自主导航技术的关键问题——路径规划进行了评述。路径规划一般可分为基于模型的环境信息完全知道的全局路径规划和基于传感器的环境信息完全未知或部分未知的局部路径规划2种类型。分别对各种方法的发展现状进行了总结,指出了各种方法的优点和不足。  相似文献   

15.
The DIJA project is a web-based CAD system accessible to any user (from neophyte to expert) and from a simple desktop computer. Its modeling approach is based on a top-down methodology and takes into account trade information. In this paper, we propose a network architecture based on a replication process and a multi-level language to manage the consistency between the client model and the server model. The whole CAD system is based on a modular architecture communicating with messages exchanges and provides a general architecture for all trade CAD applications.  相似文献   

16.
This paper presents a study on improving the traversability of a quadruped walking robot in 3D rough terrains. The key idea is to exploit body movement of the robot. The position and orientation of the robot are systematically adjusted and the possibility of finding a valid foothold for the next swing is maximized, which makes the robot have more chances to overcome the rough terrains. In addition, a foothold search algorithm that provides the valid foothold while maintaining a high traversability of the robot, is investigated and a gait selection algorithm is developed to help the robot avoid deadlock situations. To explain the algorithms, new concepts such as reachable area, stable area, potential search direction, and complementary kinematic margin are introduced, and the effectiveness of the algorithms is validated via simulations and experiments.  相似文献   

17.
This paper presents a decentralized motion planner for a team of nonholonomic mobile robots subject to constraints imposed by sensors and the communication network. The motion planning scheme consists of decentralized receding horizon planners that reside on each vehicle to achieve coordination among flocking agents. The advantage of the proposed algorithm is that each vehicle only requires local knowledge of its neighboring vehicles. The main requirement for designing an optimal conflict-free trajectory in a decentralized way is that each robot does not deviate too far from its presumed trajectory designed without taking the coupling constraints into account. A comparative study between the proposed algorithm and other existing algorithms is provided in order to show the advantages, especially in terms of computing time. Finally, experiments are performed on a team of three mobile robots to demonstrate the validity of the proposed approach.  相似文献   

18.
An amphibious mobile robot relies on effective sensing ability to adapt itself in complicated amphibious environments. In this paper, we present a multifunctional whisker-like touching sensor with low energy consumption, inspired by amphibious animals. The sensor comprises a leverage system and a two-dimensional position tracing system, transforming the moving position of biowhisker to a changing laser spot coordinates. On land, the sensor driven by a motor is able to track the movement of biowhisker directly, telling the change of contact position, to sense nearby objects and explore their surface by touching. In underwater environment, the sensor can obtain in real-time external flow direction and velocity by passive impulsion. Testing results showed that our prototype can sense flow or drag force direction in 360° exactly, and tell flow velocity under 1 m/s, it can also recognize line or arc edges of obstacle correctly by touching.  相似文献   

19.
Detection of doors using a genetic visual fuzzy system for mobile robots   总被引:1,自引:0,他引:1  
Doors are common objects in indoor environments and their detection can be used in robotic tasks such as map-building, navigation and positioning. This work presents a new approach to door-detection in indoor environments using computer vision. Doors are found in gray-level images by detecting the borders of their architraves. A variation of the Hough Transform is used in order to extract the segments in the image after applying the Canny edge detector. Features like length, direction, or distance between segments are used by a fuzzy system to analyze whether the relationship between them reveals the existence of doors. The system has been designed to detect rectangular doors typical of many indoor environments by the use of expert knowledge. Besides, a tuning mechanism based on a genetic algorithm is proposed to improve the performance of the system according to the particularities of the environment in which it is going to be employed. A large database of images containing doors of our building, seen from different angles and distances, has been created to test the performance of the system before and after the tuning process. The system has shown the ability to detect rectangular doors under heavy perspective deformations and it is fast enough to be used for real-time applications in a mobile robot.  相似文献   

20.
分析了当前的入侵检测技术的发展及存在的主要缺陷,介绍了移动Agent的概念及其优点,提出了一种新的基于移动Agent的分布式入侵检测模型MABDIDS。MABDIDS利用移动Agent的优点,设计了针对主机和网络两种环境而分别具有不同运行机制的两种检测主体,通过将多个监控节点组织成层次结构来协同实现分布式入侵检测,解决了当前分布式入侵检测系统中存在的主要问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号