首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Coatings on yttrium doped magnesium (Mg4Y) alloy substrates were prepared using alginate hydrogels by dip coating method to improve the surface bioactive properties of the substrate. Furthermore, composite coatings containing nano-sized calcium phosphate corresponding to hydroxyapatite (HA) phase entrapped within alginate hydrogel were also synthesized on the Mg4Y substrates. Surface characteristics of these coated substrates have been investigated using FTIR-ATR, SEM and EDS. The results show that the coatings with alginate alone are not stable in vitro; however, incorporation of NanoCaPs slightly improves the stability of these coatings. In addition, these composite coatings showed cell attachments with fibronectin incorporation. These results indicate that alginate hydrogels have the potential to be used as bioactive coating materials for different biofunctional applications.  相似文献   

2.
Attempts were made to deposit homogeneous films of calcium phosphates (CaPs) on two magnesium alloy systems, AZ31 and Mg-4Y, through an aqueous phosphating bath method. The deposition of silicate substituted CaPs by this aqueous method was also explored as silicate substitution is believed to increase the bioactivity of CaPs. The effect of doped and undoped coatings on the in vitro degradation and bioactivity of both alloy systems was studied. FTIR and EDX confirmed the deposition of Ca, P, and Si on both alloys and the coatings appeared to consist primarily biphasic mixtures of hydroxyapatite and β-TCP. These largely inhomogeneous coatings, as observed by SEM, were not shown to have any significant effect on maintaining the physiological pH of the culture medium in comparison to the uncoated samples, as the pH remained approximately in the 8.4-8.7 range. Interestingly, despite similar pH profiles between the coated and uncoated samples, CaP coatings affected the degradation of both alloys. These doped and undoped calcium phosphate coatings were observed to decrease the degradation of AZ31 whereas they increased the degradation of Mg-4Y. In vitro studies on cell attachment using MC3T3-E1 mouse osteoblasts showed that between the uncoated alloys, Mg-4Y appeared to be the more biocompatible of the two. Silicate substituted CaP coatings were observed to increase the cell attachment on AZ31 compared to bare and undoped CaPs coated samples, but did not have as great of an effect on increasing cell attachment on Mg-4Y.  相似文献   

3.
含碳纳米管有机无机复合涂层的制备与防护性能   总被引:2,自引:1,他引:1       下载免费PDF全文
为了改善铝合金材料的耐腐蚀性能, 研究了以正硅酸乙酯(TEOS)为主要原料, 加入一定量的KH-550, 并引入部分羟基化的多壁碳纳米管(MWCNTs-OH)进行复合, 以冰乙酸为催化剂, 采用溶胶---凝胶法在铝合金基体表面形成复合涂层。腐蚀电化学测试和扫描电镜分析结果表明, MWCNTs-OH的引入能够明显提高涂层的防护性能, 并有效防止涂层开裂。考察了MWCNTs-OH含量和热处理温度对涂层性能的影响。结果表明: MWCNTs-OH质量分数为0.04%、 热处理温度为130℃时制备的涂层性能最佳, 相应的试样在3.5wt%NaCl溶液中的腐蚀电流密度约为3.056×10-8A/cm2, 而同等实验条件下铝合金基体腐蚀电流密度为7.216×10-5A/cm2, 涂层的存在使腐蚀速率降低了3个数量级, 涂层对铝合金基体具有显著的防护效果。   相似文献   

4.
Magnesium alloy has similar mechanical properties with natural bone, but its high susceptibility to corrosion has limited its application in orthopedics. In this study, a calcium phosphate coating is formed on magnesium alloy (AZ31) to control its degradation rate and enhance its bioactivity and bone inductivity. Samples of AZ31 plate were placed in the supersaturated calcification solution prepared with Ca(NO3)2, NaH2PO4 and NaHCO3, then the calcium phosphate coating formed. Through adjusting the immersion time, the thickness of uniform coatings can be changed from 10 to 20 μm. The composition, phase structure and morphology of the coatings were investigated. Bonding strength of the coatings and substrate was 2–4 MPa in this study. The coatings significantly decrease degradation rate of the original Mg alloy, indicating that the Mg alloy with calcium phosphate coating is a promising degradable bone material.  相似文献   

5.
To reduce the degradation rate and further to improve the biocompatibility of magnesium alloy, dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD) has been fabricated on a kind of magnesium-zinc alloy by way of electrodeposition method. The experimental results of XRD, SEM and EDS showed that the electrodeposited coating on the Mg-Zn alloy mainly contains the flake-like DCPD, along with some octacalcium phosphate (Ca8(HPO4)2(PO4)4·4H2O, OCP). After the in vitro degradation of the coated alloy in modified-simulated body fluid (m-SBF), it was proved that the coating could reduce the degradation rate effectively, and the samples were covered by calcium phosphate salts with a higher Ca/P ratio. Therefore, it indicates that compared with the bare alloy, the DCPD coating rendered a more biocompatible surface, and is a promising coating candidate for biomedical magnesium materials.  相似文献   

6.
Polymeric film coatings were applied by dip coating on two magnesium alloy systems, AZ31 and Mg4Y, in an attempt to slow the degradation of these alloys under in vitro conditions. Poly(lactic-co-glycolic acid) polymer in solution was explored at various concentrations, yielding coatings of varying thicknesses on the alloy substrates. Electrochemical corrosion studies indicate that the coatings initially provide some corrosion protection. Degradation studies showed reduced degradation over 3 days, but beyond this time point however, do not maintain a reduction in corrosion rate. Scanning electron microscopy indicates inhomogeneous coating durability, with gas pocket formation in the polymer coating, resulting in eventual detachment from the alloy surface. In vitro studies of cell viability utilizing mouse osteoblast cells showed improved biocompatibility of polymer coated substrates over the bare AZ31 and Mg4Y substrates. Results demonstrate that while challenges remain for long term degradation control, the developed polymeric coatings nevertheless provide short term corrosion protection and improved biocompatibility of magnesium alloys for possible use in orthopedic applications.  相似文献   

7.
The effect of a hybrid coating, calcium phosphate (CaP) + polylactic acid (PLA), on a magnesium alloy on its in vitro degradation (general and localized) behaviour was studied for potential load-bearing biodegradable mini-implant applications. CaP was coated on a magnesium alloy, AZ91, using an electrochemical deposition method. A spin coating method was used to coat PLA on the CaP coated alloy. In vitro degradation performance of the alloy with hybrid coating was evaluated using electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF). The EIS results showed that the hybrid coating enhanced the degradation resistance of the alloy by more than two-order of magnitude as compared to the bare alloy and one-order of magnitude higher than that of the CaP coated alloy, after 1 h exposure in simulated body fluid (SBF). Long-term (48 h) EIS results also confirmed that the hybrid coating performed better than the bare alloy and the CaP coated alloy. Importantly, the hybrid coating improved the localized degradation resistance of the alloy significantly, which is critical for better in service mechanical integrity.  相似文献   

8.
To reduce the degradation rate and further to improve the biocompatibility of magnesium alloy, dicalcium phosphate dihydrate (CaHPO4·2H2O, DCPD) has been fabricated on a kind of magnesium-zinc alloy by way of electrodeposition method. The experimental results of XRD, SEM and EDS showed that the electrodeposited coating on the Mg-Zn alloy mainly contains the flake-like DCPD, along with some octacalcium phosphate (Ca8(HPO4)2(PO4)4·4H2O, OCP). After the in vitro degradation of the coated alloy in modified-simulated body fluid (m-SBF), it was proved that the coating could reduce the degradation rate effectively, and the samples were covered by calcium phosphate salts with a higher Ca/P ratio. Therefore, it indicates that compared with the bare alloy, the DCPD coating rendered a more biocompatible surface, and is a promising coating candidate for biomedical magnesium materials.  相似文献   

9.
Although stainless steel has a good biocompatibility for most clinical cases, the higher tissue response (bone bonding property) is required in orthopedic field. In this study, to improve bone-bonding ability of stainless steel substrates, a specific sequence of osteocalcin mimetic peptide is used as bioactive coating material to biochemically modify the surface of metallic samples. This sequence consists of thirteen amino acids present in the first helix of osteocalcin is synthesized in amidic form and physically adsorbed on the surface of 316LS (316 low carbon surgical grade) stainless steel substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to characterize the surface of peptide coated and uncoated substrates. The bioactivity and bone bonding ability of coated and uncoated substrates are assessed by level of hydroxyapatite formation, using transmission electron microscopy (TEM), energy-dispersive x-ray (EDS), and scanning electron microscopy (SEM). The pre-osteoblast cell attachment and proliferation are also evaluated by MTT assay. The results show that the surface of coated sample is homogenously covered by the peptide and display a rougher surface relative to uncoated sample. TEM images reveal the formation of plate-like hydroxyapatite crystals in the presence of the peptide and an amorphous calcium phosphate phase without the peptide. Pre-osteoblast cells proliferation is significantly higher on the surface of peptide coated substrate, while cell attachment remains unaffected by the peptide coatings. Pre-osteoblast cells also demonstrate a higher degree of spreading on the surface of coated sample. It is believed that osteocalcin mimetic peptide improve surface bioactivity and promote hydroxyapatite crystal formation may lead to increased mineralization and bone formation on the surface of metallic biomedical devices.  相似文献   

10.
Calcium phosphates coatings were deposited onto titanium alloy discs via en electrodeposition method. Titanium alloy discs were blasted with calcium phosphate particles, then etched in a mixture of nitric and fluoric acids and rinsed in demineralized water. The titanium alloy disc (cathode) and platinum mesh (anode) were immersed in a supersaturated calcium phosphate electrolyte buffered at pH 7.4 and connected to a current generator. The microstructure, chemical composition and crystallinity of the electrodeposited coatings were studied as function of time 10–120 min, temperature 25–80°C, current density 8–120 mA/cm2, magnesium and hydrogen carbonate amounts (0.1–1 mM). Uniform calcium phosphate coatings were obtained in 30 min but coating thickness increased with deposition time. Raising the temperature of electrolyte resulted in more uniform coatings as ionic mobility increased. Low current density was preferable due to hydrogen gas evolving at the cathode, which disturbed the deposition of calcium phosphate crystals on titanium. The amounts of magnesium and hydrogen carbonate ions affected both the homogeneity and morphology of the coatings. This study showed that the electrodeposition method is efficient for coating titanium with osteoconductive calcium phosphate layers.  相似文献   

11.
In this study, anti-corrosion coatings were prepared and coated successfully on magnesium alloy substrates by mixing nanopowders, solvent, curing agent with epoxy resin. The effect of the amount of iron trioxide (Fe2O3) on the adhesion strength and corrosion resistance on magnesium alloy was investigated with standard protocols, and electrochemical measurements were also made in 3.5 wt.% NaCl solutions. The surface morphology and corrosion mechanism after corrosion tests was characterized using FESEM analysis. Nanoparticles in matrix acted as filler, and interstitial cross-linked spaces and other coating artifacts regions (micro cracks and voids) would all affect the anti-corrosion properties of coating. The results showed the proper powder content not only provided adhesion strength to these coatings but also improved obviously their anticorrosion. Hydrogen bound to the amine nitrogen (1N) could take part in the curing process rather than hydrogen of the amide site due to the smaller ΔG and the more stable configuration.  相似文献   

12.
In this study, the Ti alloy substrate was simultaneously coated with TiO2 film and hydroxyapatite using micro-arc oxidation, a relatively new surface modification technique where thick, hard, and anticorrosive oxide coatings can be easily and cost-effectively fabricated. Pulsed DC power and various voltages were applied to the Ti alloy substrate. Citric acid, ethylene diamine, and ammonium phosphate were also dissolved as electrolytes followed by the dispersion of hydroxyapatite nanoparticles into those prepared electrolytes. The effects of the composition and applied voltage on the bonding strength, bioactivity, cell attachment and cytotoxicity were investigated. It was observed that the simultaneously coated TiO2 and hydroxyapatite samples showed improved bioactivity, cell attachment and viability, while maintaining the bonding strength between the coated film and substrate.  相似文献   

13.
The influence of yttrium oxide on the bioactivity of glasses in the system SiO2-Na2O-P2O5-CaO-B2O3-K2O-MgO was studied in a simulated body fluid (SBF). Two series of glasses with different bioactivity were investigated. The reaction layers formed on the surface of the exposed glasses were evaluated by means of back scattered electron imaging of scanning electron microscopy equipped with energy dispersive X-ray analysis (BEI-SEM/EDXA). The concentration of Y, Ca and P released from the glasses into SBF, during 21 days was determined using inductively coupled plasma-emission spectroscopy ICP-AES and inductively coupled plasma-mass spectroscopy ICP-MS. Introducing yttrium in the selected bioactive glass tended to diminish the bioactivity of the glasses. The thickness of the calcium phosphate layer decreased with increasing yttrium oxide content. The same effect was also observed when yttrium oxide partially replaced only calcium, magnesium and phosphorous oxide in the precursor glass. The data show that we can produce bioactive glasses with yttrium oxide as a component. By suitable tailoring of the rest of the glasses the yttrium effect on the glass behavior in SBF should be possible to control and thus produce yttrium containing glasses with desired bioactivity.  相似文献   

14.
In this study, a magnesium alloy (AZ91) was coated with calcium phosphate using potentiostatic pulse-potential and constant-potential methods and the in vitro corrosion behaviour of the coated samples was compared with the bare metal. In vitro corrosion studies were carried out using electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid (SBF) at 37 °C. Calcium phosphate coatings enhanced the corrosion resistance of the alloy, however, the pulse-potential coating performed better than the constant-potential coating. The pulse-potential coating exhibited ~ 3 times higher polarization resistance than that of the constant-potential coating. The corrosion current density obtained from the potentiodynamic polarization curves was significantly less (~ 60%) for the pulse-deposition coating as compared to the constant-potential coating. Post-corrosion analysis revealed only slight corrosion on the pulse-potential coating, whereas the constant-potential coating exhibited a large number of corrosion particles attached to the coating. The better in vitro corrosion performance of the pulse-potential coating can be attributed to the closely packed calcium phosphate particles.  相似文献   

15.
In this study a kind of patent binary Mg–6 wt.%Zn magnesium alloy was investigated as degradable biomedical material. The results of in vitro degradation including electrochemical measurements and immersion tests in simulated body fluid (SBF) revealed that zinc could elevate both the corrosion potential and Faraday charge transfer resistance of magnesium and thus improve the corrosion resistance. XRD and EDS analysis proved that the corrosion products on the surface of Mg–Zn contained hydroxyapatite (HA), Mg(OH)2 and other Mg/Ca phosphates, which could reduce the degradation rate. The degradation process of magnesium alloy and the mechanism of corrosion layer formation were also discussed in this work, i.e. the byproducts of degradation of magnesium, Mg2+ and OH?, reacted with the phosphate and Ca2+ in the SBF, thus the corrosion layer containing HA, Mg(OH)2 and other magnesium-substituted apatite precipitated in corrosion pits and covered the surface of magnesium alloy.The hemolysis test found that the hemolysis rate of Mg–Zn was 3.4%, which is lower than the safe value of 5% according to ISO 10993-4. For the cell culture experiments, after 2 h incubation the pre-osteoblastic cell MC3T3-E1 was able to adhere and spread on the corrosion layer of Mg–Zn alloy, indicating that despite the fluctuation of pH value of DMEM culture solution, Mg–Zn alloy could still support the earlier adhesion of pre-osteoblastic cells on the surface. Hemolysis and adhesion of cells display good biocompatibility of Mg–Zn alloy in vitro.  相似文献   

16.
Novel sol-gel silica coatings reinforced with multi-walled carbon nanotubes (MWCNTs) have been prepared using the organic sol-gel route and the dip-coating technique on magnesium alloy substrates. Homogeneous and dense composite coatings with good reinforcement dispersion were fabricated using low temperature and atmospheric pressure fabrication conditions. The presence of nanotubes caused a substantial enhancement of silica coating fracture toughness on coatings deposited on grounded substrates but it was not as effective on polished substrates because of the low adhesion of the coating to the substrate. Bridging phenomena caused by the MWCNTs was observed, indicating that an effective load transfer between the silica matrix and the nanotube reinforcement was also achieved.  相似文献   

17.
Calcium phosphate coatings were prepared on magnesium substrates via a biomimetic coating process. The effects of a magnesium hydroxide pretreatment on the formation and the ultimate corrosion protection of the coatings were studied. The pretreatment layer was found to affect the amount of defects present in the coatings. Corrosion resistance of the coatings was studied in vitro using two simulated body fluids, 0.8% NaCl and Hanks solution. In NaCl, the resistance to corrosion of all samples decreases with time as corrosion proceeded through cracks and other defects in the coatings. Samples with no pretreatment displayed the highest corrosion resistance as these samples had the fewest defects in the coating. However, in Hanks solution, corrosion resistance increased with time due to additional nucleation of calcium phosphate from the fluid on to the substrate. In this solution, additional pretreatment time was beneficial to the overall corrosion resistance.  相似文献   

18.
Magnesium-containing apatite coatings were prepared on Ti6Al4V substrates by sol-gel dip coating method. Standard simulated body fluid (SBF) was used to evaluate the bioactivity of the coatings. A series of the coatings according to the composition (Ca10−xMgx)(PO4)6(OH)2, where x = 0 to 2, is synthesized and immersed in the standard SBF for periods of 7 to 35 days for direct deposition of apatite layer from the SBF solution. Scanning electron microscopy (SEM) was used to examine the morphology changes of the SBF apatite layer that occurred during in vitro immersion. X-ray diffractometry, Fourier Transformation Infra-Red Spectroscopy and X-ray Photoelectron Spectroscopy were used to analyse the phases, chemical groups and composition of the sol-gel coating. Results show that as the sol-gel coating contains magnesium, this promotes deposition of apatite layer from SBF. As x ≤ 1, SBF immersion gives rise to a dense apatite layer. However, as ? 1, selected dissolution of the deposited layer takes place, which results in serious pitting on the surface. Also, Mg ions from the dissolution of the sol-gel coating during immersion in the SBF apparently played a role in the subsequent deposition of apatite o the coating, evidence of Mg was found in the apatite layer.  相似文献   

19.
Implants with antibiotic drug loaded bioactive coatings have been increasingly applied in orthopedic operations. Here we report the drug release behavior of gentamycin loaded chitosan/calcium phosphate coatings on titanium. Chitosan/calcium phosphate coatings with different component ratios and surface topographies were prepared by electrochemical deposition method. Our results showed that the drug release from these coatings was controlled by their component ratio and surface topography, and the former ratio played a more significant role. The present coatings could provide an effective way to create both good bioactivity and antibacterial activity.  相似文献   

20.
采用溶胶-凝胶法制备出CaO-P2O5-SiO2系统生物活性玻璃纤维.通过倒置相差显微镜、SEM、FTIR等测试手段考察了生物活性玻璃纤维的微观形貌和显微结构;采用生物材料的体外实验方法以及XRD、SEM、FTIR等测试手段研究了生物活性玻璃纤维在模拟生理体液(SBF)中浸泡后的表面反应产物的形成机理、结晶程度和微观形貌.结果表明,这种生物活性玻璃纤维是一种不连续的短纤维,具有较好的纤维形态和较高的生物活性,在短时间内即可在模拟生理体液(SBF)中形成茸毛状A类碳酸羟基磷灰石(HCA)层.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号