首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work intends to deal with the optimal kinematic synthesis problem of parallel manipulators under a unified framework. Observing that regular (e.g., hyper-rectangular) workspaces are desirable for most machines, we propose the concept of effective regular workspace, which reflects simultaneously requirements on the workspace shape and quality. The effectiveness of a workspace is characterized by the dexterity of the mechanism over every point in the workspace. Other performance indices, such as manipulability and stiffness, provide alternatives of dexterity characterization of workspace effectiveness. An optimal design problem, including constraints on actuated/passive joint limits and link interference, is then formulated to find the manipulator geometry that maximizes the effective regular workspace. This problem is a constrained nonlinear optimization problem without explicitly analytical expression. Traditional gradient based approaches may have difficulty in searching the global optimum. The controlled random search technique, as reported robust and reliable, is used to obtain an numerical solution. The design procedure is demonstrated through examples of a Delta robot and a Gough-Stewart platform.  相似文献   

2.
This paper presents the design strategy of serial manipulators with constraint satisfaction. The algorithm provides certified solutions to the range of values of the manipulator design parameters that satisfy the given constraints for all points inside a desired workspace. Alternatively, it can also be used to obtain the achievable workspace of a particular manipulator topology within which a set of given constraints are satisfied. This strategy can therefore be applied to the general case of a serial manipulator design problem, robots of adjustable parameters, or even reconfigurable robot strategy to obtain a suitable topology. The interval-based algorithm was implemented on an example serial anthropomorphic manipulator with joint displacement constraints and obtains the possible variations to the manipulator topology that allow the required workspace to be achievable under the given joint displacement constraints. Results are presented and discussed.   相似文献   

3.
This paper presents a new approach to the architecture optimization of a general 3-PUU translational parallel manipulator (TPM) based on the performance of a weighted sum of global dexterity index and a new performance index-space utility ratio (SUR). Both the inverse kinematics and forward kinematics solutions are derived in closed form, and the Jacobian matrix is derived analytically. The manipulator workspace is generated by a numerical searching method with the physical constraints taken into consideration. Simulation results illustrate clearly the necessity to introduce a mixed performance index using space utility ratio for architectural optimization of the manipulator, and the optimization procedure is carried out with the goal of reaching a compromise between the two indices. The analytical results are helpful in designing a general 3-PUU TPM, and the proposed design methodology can also be applied to architectural optimization for other types of parallel manipulators.  相似文献   

4.
This paper discusses on determination of the workspace of the body of a quadruped walking robot, called “body workspace”, and its applicability in legged locomotion. The body workspace represents the set of all valid body configurations for a next step by considering three constraints of a body position: existence of the inverse kinematic solutions, reach-ability of the next swing leg to the next desired foothold, and static equilibrium of the robot when the next swing leg is lifted. The space contains all the body positions that ensure the existence of inverse kinematic solutions, is calculated in the first. Then, a subspace inside the determined space that allows the robot to reach the next desired foothold is analyzed. Finally, the workspace is obtained by excluding all the positions inside the subspace that do not ensure the equilibrium of the robot when the next swing leg is lifted. Therefore, the workspace shows all possible solutions for choosing the next body configuration of a given static walking problem. It is significant in improving the robot’s performances since moving body takes an intrinsic role in static walking, besides swinging a leg. The algorithm runs fast in real-time because it is a pure geometric method. The body workspace of a quadruped walking robot is visualized to help the understanding of the algorithm. In addition, applications of using the body workspace in improving the robot’s ability are presented to show potential applicability of the workspace.  相似文献   

5.
6.
Robot workspace is the set of positions a robot can reach. Workspace is one of the most useful measures for the evaluation of a robot. Workspace is usually defined as the reachable space of the end-effector in Cartesian coordinate system. However, it can be defined in joint coordinate system in terms of joint motions. In this paper, workspace of the end-effector is called task workspace, and workspace of the joint motions is called joint workspace. Joint workspace of a parallel kinematic machine (PKM) is focused, and a tripod machine tool with three degrees of freedom (DOF) is taken as an example. To study the joint workspace of this tripod machine tool, the forward kinematic model is established, and an interpolating approach is proposed to solve this model. The forward kinematic model is used to determine the joint workspace, which occupies a portion of the domain of joint motions. The following contributions have been made in this paper include: (i) a new concept so-called joint workspace has been proposed for design optimization and control of a PKM; (ii) an approach is developed to determine joint workspace based on the structural constraints of a PKM; (iii) it is observed that the trajectory planning in the joint coordinate system is not reliable without taking into considerations of cavities or holes in the joint workspace.  相似文献   

7.
Robot manipulators are programmable mechanical systems designed to execute a great variety of tasks in a repetitive way. In industrial environment, while productivity increases, cost reduction associated with robotic operation and maintenance can be obtained as a result of decreasing the values of dynamic quantities such as torque and jerk, with respect to a specific task. Furthermore, this procedure allows the execution of various tasks that require maximum system performance. By including obstacle avoidance ability to the robot skills, it is possible to improve the robot versatility, i.e., the robot can be used in a variety of operating conditions. In the present contribution, a study concerning the dynamic characteristics of serial robot manipulators is presented. An optimization strategy that considers the obstacle avoidance ability together with the dynamic performance associated with the movement of the robot is proposed. It results an optimal path planning strategy for a serial manipulator over time varying constraints in the robot workspace. This is achieved by using multicriteria optimization methods and optimal control techniques. Numerical simulation results illustrate the interest of the proposed methodology and the present techniques can be useful for the design of robot controllers. Commemorative contribution.  相似文献   

8.
The Stewart parallel mechanism is used in various applications due to its high load-carrying capacity, accuracy and stiffness, such as flight simulation, spaceship aligning, radar and satellite antenna orientation, rehabilitation applications, parallel machine tools. However, the use of such parallel robots is not widespread due to three factors: the limited workspace, the singularity configurations existing inside the workspace, and the high cost. In this work, an approach to support the design of a cost-effective Stewart platform-based mechanism for specific applications and to facilitate the choice of suitable components (e.g., linear actuators and base and mobile plates) is presented. The optimal design proposed in this work has multiple objectives. In detail, it intends to maximize the payload and minimize the forces at each leg needed to counteract external forces applied to the mobile platform during positioning or manufacturing, or, in general, during specific applications. The approach also aims at avoiding reduction of the robot workspace through a kinematic optimization. Both symmetric and unsymmetrical geometries have been analysed to show how the optimal design approach can lead to effective results with different robot configurations. Moreover, these objectives are achieved through a dynamic optimization and several optimization algorithms were compared in terms of defined performance indexes.  相似文献   

9.
Rehabilitation robotics is an evolving area of active research and recently novel mechanisms have been proposed to reinstate complex human movements. Parallel robots are of particular interest to researchers since they are rigid and can provide enough load capacity for human joint movements. This paper proposes a soft parallel robot (SPR) for ankle joint rehabilitation. Kinematic workspace analysis is carried out and the singularity criterion of the SPR’s Jacobian matrix is used to define the feasible workspace. A global conditioning number (GCN) is defined using the Jacobian matrix as a performance index for the evaluation of the robot design. An optimization problem is formulated to minimize the GCN using modified genetic algorithm (GA). Results from simple GA and modified GA are compared and discussed. As a result of the optimization, an optimal robot design is obtained which has a near unity GCN with almost uniform distribution in the entire feasible workspace of the robot.  相似文献   

10.
Industrial robots are part of production systems and it is important to place them into the system according to their properties and behaviour. The information, obtained from the technical sheets of robots, about workspace (its dimensions and shape) is insufficient for designing the production system. The information about mobility is missing. To represent the behaviour of the robot in the workspace, velocity anisotropy of the robot is introduced and defined as the length of the shortest velocity ellipsoid axes, which can be constructed for any position of robot in its tool centre point. The position of a tool centre point is equivalent to the point in the workspace. A graphical representation of the 3D workspace with included velocity anisotropy is then performed and an example for a design of a robotised welding production system is given. In this example the benefits of the graphical representation of the workspace with included velocity anisotropy are presented and discussed.  相似文献   

11.
Shipbuilding processes involve highly dangerous manual welding operations. Welding ship walls inside double-hulled structures presents a particularly hazardous environment for workers. This paper describes the “Rail Runner X” (RRX), a new robotic system that can move autonomously inside the walls of a double-hulled ship and automatically execute the required welding processes. The RRX robotic system is composed of a mobile platform and a welding robot consisting of a 3P3R serial manipulator. The robot is used to weld U-shaped trajectories located between two longitudinal stiffeners. The mobile platform enables traverse movements onto neighboring longitudinal stiffeners. The entire cross section of the robotic system is small enough to be placed inside the double-hulled structure via a conventional access hole from the outside shipyard floor. The overall engineering design process that led to the final robot solution developed is presented in this paper, including kinematic analysis data and experimental results for verifying the autonomous movement and welding performance.  相似文献   

12.
The aim of this paper is to optimize a thermal model of a friction stir welding process by finding optimal welding parameters. The optimization is performed using space mapping and manifold mapping techniques in which a coarse model is used along with the fine model to be optimized. Different coarse models are applied and the results and computation time are compared to gradient based optimization using the full model. It is found that the use of space and manifold mapping reduces the computational cost significantly due to the fact that fewer function evaluations and no fine model gradient information is required.  相似文献   

13.
A collision-free motion planning method for mobile robots moving in 3-dimensional workspace is proposed in this article. To simplify the mathematical representation and reduce the computation complexity for collision detection, objects in the workspace are modeled as ellipsoids. By means of applying a series of coordinate and scaling transformations between the robot and the obstacles in the workspace, intersection check is reduced to test whether the point representing the robot falls outside or inside the transformed ellipsoids representing the obstacles. Therefore, the requirement of the computation time for collision detection is reduced drastically in comparison with the computational geometry method, which computes a distance function of the robot segments and the obstacles. As a measurement of the possible occurrence of collision, the collision index, which is defined by projecting conceptually an ellipsoid onto a 3-dimensional Gaussian distribution contour, plays a significant role in planning the collision-free path. The method based on reinforcement learning search using the defined collision index for collision-free motion is proposed. A simulation example is given in this article to demonstrate the efficiency of the proposed method. The result shows that the mobile robot can pass through the blocking obstacles and reach the desired final position successfully after several trials.  相似文献   

14.
并联机器人工作空间的研究   总被引:17,自引:2,他引:15  
吴生富  王洪波 《机器人》1991,13(3):33-39
本文对并联机器人的工作空间进行了研究.算法上采用输入转化的方法.使优化过程大为简化.在此基础上.对并联机器人工作空间的各截面进行了分析.并详细讨论了结构尺寸与工作空间的关系.得出扩大工作空间的几种途径.这对设计和应用并联机器人都有实际意义.  相似文献   

15.
The development of an algorithm of parametric optimization to achieve optimal cyclic gaits in space for a thirteen-link 3D bipedal robot with twelve actuated joints is proposed. The cyclic walking gait is composed of successive single support phases and impulsive impacts with full contact between the sole of the feet and the ground. The evolution of the joints are chosen as spline functions. The parameters to define the spline functions are determined using an optimization under constraints on the dynamic balance, on the ground reactions, on the validity of impact, on the torques, and on the joints velocities. The cost functional considered is represented by the integral of the torques norm. The torques and the constraints are computed at sampling times during one step to evaluate the cost functional for a feasible walking gait. To improve the convergence of the optimization algorithm the explicit analytical gradient of the cost functional with respect to the optimization parameters is calculated using the recursive computation of torques. The algorithm is tested for a bipedal robot whose numerical walking results are presented.  相似文献   

16.
Image searching is a creative process. We have proposed a novel image retrieval system that supports creative search sessions by allowing the user to organise their search results on a workspace. The workspace’s usefulness is evaluated in a task-oriented and user-centred comparative experiment, involving design professionals and several types of realistic search tasks. In particular, we focus on its effect on task conceptualisation and query formulation. A traditional relevance feedback system serves as a baseline. The results of this study show that the workspace is more useful in terms of both of the above aspects and that the proposed approach leads to a more effective and enjoyable search experience. This paper also highlights the influence of tasks on the users’ search and organisation strategy.  相似文献   

17.
Rapid set-up of robotic system is critical for realising the high-mix low-volume applications. This paper presents an efficient method to determine the optimal robot base placement for executing required end-effector trajectories while dealing with redundancy problem for wrist-partitioned 6 R articulated robots. The main feature of the method includes the integration of two multi-objectives optimization loops that involve parameterized inverse kinematics of the robot to find the proper robot configurations. Firstly, an optimization scheme is introduced in consideration of all the robot and operational constraints including reachability, singularity avoidance, and collision avoidance. Then, a redundancy resolution scheme is proposed based on a modified particle swarm optimization (MPSO) for the considered target point. Consequently, the optimal robot base placement is obtained via another optimization loop which includes all robot trajectories for the application. The method was applied in a complex robotic welding application. For a set of desired welding torch trajectories on the workpiece, the optimal robot base placement is computed within a few minutes.  相似文献   

18.
In this paper, we present a novel data-driven design method for the human-robot interaction (HRI) system, where a given task is achieved by cooperation between the human and the robot. The presented HRI controller design is a two-level control design approach consisting of a task-oriented performance optimization design and a plant-oriented impedance controller design. The task-oriented design minimizes the human effort and guarantees the perfect task tracking in the outer-loop, while the plant-oriented achieves the desired impedance from the human to the robot manipulator end-effector in the inner-loop. Data-driven reinforcement learning techniques are used for performance optimization in the outer-loop to assign the optimal impedance parameters. In the inner-loop, a velocity-free filter is designed to avoid the requirement of end-effector velocity measurement. On this basis, an adaptive controller is designed to achieve the desired impedance of the robot manipulator in the task space. The simulation and experiment of a robot manipulator are conducted to verify the efficacy of the presented HRI design framework.   相似文献   

19.
In this paper, a new method is proposed to promote the efficiency and accuracy of nonlinear interval-based programming (NIP) based on approximation models and a local-densifying method. In conventional NIP methods, searching for the response bounds of objective and constraints are required at each iteration step, which forms a nested optimization and leads to extremely low efficiency. In order to reduce the computational cost, approximation models based on radial basis functions (RBF) are used to replace the actual computational models. A local-densifying method is suggested to guarantee the accuracy of the approximation models by reconstructing them with densified samples in iterations. Thus, through a sequence of optimization processes, an optimal result with fine accuracy can be finally achieved. Two numerical examples are used to test the effectiveness of the present method, and it is then applied to a practical engineering problem.  相似文献   

20.
Improper maintenance, repair, and operations of societal centric structures can lead to catastrophic failures that drastically affect global economy, the environment, and everyday life. Due to the remote, cramped and highly irregular environmental nature of these structures, routine manual procedures and operations can be rather tedious, dangerous, and hazardous for humans. Automating maintenance, repair, and operations removes human workers from having to crawl within highly cluttered and constrained spaces, breathing in stale air mixed with fumes from welding or particulate from repair work, and provides higher reliability and consistency in the repair work. This paper introduces SHeRo, a scalable hexapod robot designed for maintenance, repair, and operations within remote, inaccessible, irregular, and hazardous environments. The scalability of the design enhances traditional hexapod robot designs by incorporating two prismatic joints into each leg. A detailed discussion on the design and realization of SHeRo is provided. An analysis on the stability and workspace of SHeRo is presented and a dynamic criterion is developed to integrate the concepts of robot stability and constant orientation workspace into a stable workspace. The analytical solution of the lateral stable workspace of SHeRo is derived along with a metric for comparing stable workspace between different robot configurations. A simulated demonstration and two physical experimental demonstrations are presented showing the advantage of introducing scalability into the hexapod robot design along with the workspace enhancement and flexibility of the scalable hexapod robot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号