共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
3.
本文根据LTCC埋置衰减器的实验,阐明了LTCC工艺制作的埋置衰减器在射频/微波领域应用的突出优点,并从便于推广的角度介绍了简便的推算设计方法。 相似文献
4.
5.
6.
LTCC工艺技术研究 总被引:2,自引:0,他引:2
叙述了LTCC技术的起源、特点及未来发展趋势.介绍了LTCC产品的种类、优越性及广阔的应用领域,对LTCC工艺技术中高精度金属化印刷技术和陶瓷高温共烧技术进行了深入研究,剖析了影响金属化印刷精度、导体表面粗糙度、LTCC基板翘曲度和陶瓷强度的工艺因素.并分析了如何根据产品布线特点来设计和优化印刷工艺参数、如何根据基板结构特点来设计和优化排胶曲线.通过大量的工艺试验和数据测试,结果表明,印刷压力影响金属化导体精度和表面粗糙度、烧结曲线排胶段升温速率影响LTCC基板翘曲度和陶瓷强度. 相似文献
7.
低温共烧多层陶瓷(LTCC)基板是微电子先进产品MCM的重要组成部分。这种基板的通孔金属化是制作成功基板的关键。本文重点分析了形成稳定金属化通孔导体的固有应力和热应力产生的原因,以及如何采取对策来解决。 相似文献
8.
采用低温共烧陶瓷(LTCC)技术和三维立体组装技术设计制作了一种适用于X波段接收机的前端模块,并进行了测试。结果表明:设计制作出的接收机前端主要技术指标为:增益大于20 dB、噪声系数小于等于7.8 dB和1 dB压缩点功率大于等于10 dBm,层数为10层。在电气性能相当的情况下,其体积和质量相对于传统PCB组件有较大缩减。 相似文献
9.
AlN基片流延浆料粘度的研究 总被引:7,自引:0,他引:7
通过对比实验研究了影响AlN流延浆料粘度的主要因素。结果表明,环境温度或溶剂比例的增加,浆料的粘度值下降;而较小的粘度和增塑剂的减少则使粘度上升。严格控制各影响因素,对实现稳定流延工艺非常必要 相似文献
10.
低温共烧陶瓷(LTCC)技术作为一种新兴的集成封装技术,以其优良的高频、高速传输特性及小型化、高可靠而备受关注。而建模分析和优化综合是叠层LTCC滤波器设计的关键。该文利用智能方法对叠层LTCC滤波器建模与优化,采用LTCC技术制备多层结构的LTCC滤波器。该结构滤波器的尺寸显著减小,从而有利于实现电路的小型化。 相似文献
11.
以自制的CAS(CaO-Al2O3-SiO2)系玻璃作为功能相,通过分析不同的有机组分对流延浆料流变性能及分散稳定性的影响,优选:甲基乙基酮-乙醇为二元共沸溶剂;磷酸三丁酯为分散剂。浆料的黏度随粘结剂加入量增大而增大。随着增塑剂含量的增加,浆料黏度先减小后增大,当ζ(增塑剂:粘结剂)=0.6时,浆料黏度最低。流延浆料的最佳配方为:玻璃粉100.0g,粘结剂18.0g,磷酸三丁酯3.0g,增塑剂10.8g,溶剂为150.0~170.0g。流延生带样品于950℃烧结后获得相对密度达到96%,相对介电常数为6.97,介电损耗低于0.3%(1MHz)的玻璃陶瓷基板材料。 相似文献
12.
随着电子技术在自动化、工业控制、医学、航天航空和日常生活等领域的广泛应用,高密度、宽温域、小尺寸、多功能、高品质等特性日益成为其发展的必然趋势,同时这些特性给传统封装技术及工艺带来了巨大的挑战。在众多的封装技术中,低温共烧陶瓷LTCC(Low Temperature Co-fired Ceramic)技术成为了国际研究的焦点,因为利用LTCC技术制备的产品不仅能具备高电流密度、小体积,而且还具备高可靠性和优良的电性能、传输特性及密封性。LTCC技术是一种先进的混合电路封装技术。它将四大无源器件,即变压器(T)、电容器(C)、电感器(L)和电阻器(R)集成,配置于多层布线基板中,与有源器件(如:功率MOS、晶体管和IC电路模块等)共同集成为一完整的电路系统。因此LTCC技术又称为混合集成技术,它能有效地提高电路的封装密度及系统的可靠性。笔者围绕LTCC技术中的低温共烧铁氧体LTCF(Low Temperature Co-fired Ferrite)材料,采用理论、实验及应用三位一体的研究模式,开发了一种新型LTCC复合介质材料,不但对该材料的复合机理进行了理论模拟而且对其在LTCC滤波器中的应用展开了研究。笔者在理论模型、材料制备和器件设计上做了一些探索性和创新性的工作,具体内容如下:(1)探索性地建立了针对LTCC陶瓷的低温烧结模型。模型基于液相烧结理论,以液相在晶粒边界引起的毛细管压力及溶解–淀析过程中化学势能的变化为烧结驱动力,将烧结温度、时间与烧结后的最终晶粒大小、相对密度联系起来,模拟出低温烧结动态过程中相对密度的变化趋势。(2)首次提出铁电–铁磁复合材料的复合理论并给予了系统的分析。讨论了复合材料中两相成分的化学结构及电磁性能在理论上对复合可能性的影响,根据材料的微观结构建立了复合模型,模型中假设铁电相均匀分布于铁磁相晶粒表面,并和气孔一起形成非磁性薄层将铁磁晶粒之间隔断,使铁磁颗粒孤立。通过对复合结构中铁磁晶粒内场变化的分析,推导出复合材料铁电/铁磁成分比与复合磁导率的关系方程;另外,利用微观结构中电流流通的等效电路,推导得到不同铁电/铁磁成分比时复合材料复数介电常数与频率的关系表达式。(3)研究了工艺条件对材料电磁性能的影响。按照工艺流程改变工艺参数预烧温度、二次球磨时间、烧结曲线中升温降温速度、烧结温度和保温时间,通过SEM、XRD等分析手段了解改变工艺参数对铁氧体材料微观结构的影响规律,通过对材料介电常数频谱、磁导率频谱及品质因数的测量得知工艺参数对材料电磁性能的影响规律,根据实验数据结果得到最佳铁氧体烧结工艺参数。(4)研究了不同掺杂离子及助熔剂的加入对低温烧结铁氧体LTCF材料的微观结构及电磁性能影响。首先研究了不同MnCO3和CuO含量对NiZn铁氧体烧结特性、微观结构及电磁性能的影响,首次发现了掺杂Mn离子的NiZn铁氧体其电磁性能对烧结温度具有敏感性。其次研究了不同助熔剂Bi2O3、WO3和Nb2O5对NiCuZn铁氧体烧结特性、微观结构及电磁性能的影响,实验揭示W6+对材料微观结构的改善;最后对低温NiCuZn铁氧体进行改性掺杂,研究稀土氧化物CeO2对其微观结构及电磁性能的影响,并给出NiCuZn铁氧体掺杂稀土元素时的磁频谱及介频谱。(5)开发了一新型的基于不同低温烧结NiCuZn铁氧体与高介电常数(BaTiOk+X)钙钛矿的具有电感、电容双性的铁电–铁磁复合材料,研究了不同铁电–铁磁含量对各组复合材料微观结构及电容电感双性的影响。并研究了不同助熔剂Bi2O3、WO3和Nb2O5对其烧结特性、微观结构及电容电感双性的影响。最后对复合材料进行稀土掺杂改性,研究稀土氧化物CeO2对其微观结构及电容电感双性的影响。(6)设计并制作出两种使用LTCC复合双性材料的3G通讯设备用带通滤波器。采用Ansoft HFSS电磁仿真软件对所建立的滤波器模型进行模拟仿真,通过调节滤波器结构参数使滤波器各性能指标达到要求,并实现生产制备。制得带通中心频率3.5 GHz,插损<2.8 dB,带宽>400 MHz,阻带衰减大于35 dB的微带式带通滤波器和带通中心频率1.4 GHz,插损<3 dB,带宽>160 MHz,阻带衰减大于30 dB的LC式带通滤波器。 相似文献
13.
LTCC基板广泛应用于先进的LED封装技术。阐述了LED的陶瓷封装基板的特点,介绍了制造LTCC封装基板的生瓷片性能和制造工艺,通过对LTCC基板热电分离结构的优点分析,指出金属散热通孔是提高LTCC基板散热效果的关键原因,并展望了LTCC封装基板发展方向。 相似文献
14.
15.
16.
微波滤波器在现代微波技术领域中的作用举足轻重,而基于LTCC(低温共烧陶瓷)技术的多层微波滤波器因具有满足现代电子系统要求的高频化、小型化及低成本等许多优点而成为当今微波领域常用滤波器之一。如何提高LTCC滤波器性能使其损耗更小,更适应实际工程的高要求就成为了关键一环。本文结合经典的分布参数理论设计出一个中心频率为1.2GHz,带宽40MHz的新型LTCC多层滤波器,其尺寸为14mm×20mm×2mm,并在此基础上结合金属电导率和趋肤深度的理论对金属层改进,设计出性能更优的LTCC滤波器,从而得出改善LTCC滤波器性能的方法,并做出实物验证了与仿真的一致性。 相似文献
17.
随着低温共烧陶瓷(Low Temperature Co—fired Ceramic,LTCC)多层基板为适应电子器件向着小型化、高密度、多功能的发展,从而对低温共烧工艺设备的也提出了更为严格的要求。针对目前低温共烧工艺设备的主要特点介绍了低温共烧陶瓷技术中新型烧结炉的研制方案及技术难点。 相似文献