首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
This work presents the first systematic study of conductivity characteristics of alkaline earth titanates in the form of polycrystalline and heteroepitaxial thin films as well as nanocrystalline ceramics as a function of temperature (between 600_C and 1000_C) and continuously adjustable oxygen partial pressures ranging from 10– 20 bar to 1 bar. Compared to the well-known log,-log, pO2 profiles of single crystals, the conductivity behavior of CSD-prepared, polycrystalline SrTiO3 thin films with a feature size of about 50 nm differs radically. The most prominent characteristics are a sharp drop under reducing conditions followed by a broad plateau region. Tailored investigations on heteroepitaxial as well as polycrystalline thin films grown by PLD and especially by studies on nanocrystalline BaTiO3 ceramics with a mean grain size of 100 nm allowed an unambiguous assignment of the described effects to the nanocrystalline morphology of the samples.  相似文献   

2.
Heat treatment of ceramics is an important process to tailor the fine electromechanical properties. To explore the criteria for optimized heat treatment in a perovskite structure of (1–x)Bi1.05FeO3xBaTiO3 (BF–BT100x) system, the structural phase relation, ferroelectric and piezoelectric response of BF–BT36 and BF–BT40 ceramics prepared by furnace cooling (FC) and quenching process were investigated. The X-ray diffraction examination showed single pseudocubic perovskite structure for all the ceramics. The homogenous microstructure was obtained for all ceramics with relatively large grain size in the furnace cooled samples. Well saturated ferroelectric hysteresis loops and enhanced piezoelectric constant (d33?=?97 pC/N) were achieved by quenching process. Dielectric curve of BF–BT36 showed large dielectric constant at its Curie temperature, however, BF–BT40 showed diffused relaxor-like dielectric anomalies. Quenched BF–BT36 samples showed typical butterfly like field induced strain curves, however negative strain decreased in BF–BT40 ceramics. From these investigated study, it is observed that BF–BT ceramics are very sensitive to the heat treatment process (furnace cooling and quenching) on the dielectric, electromechanical properties.  相似文献   

3.
The reduction of grain size from the microcrystalline regime into the nanocrystalline regime is known to produce significant changes in the transport properties of polycrystalline ceramics. Part 1 of this series [1] described the development of a pixel-based finite-difference nested-cube model (NCM), which was used to evaluate existing composite models for the electrical/dielectric properties of polycrystalline ceramics over the entire range of grain core vs. grain boundary volume fractions, from the nanocrystalline regime to the microcrystalline regime. Part 2 addresses grain shape and periodicity effects in such composite modeling, and the extraction of local materials properties (conductivity, dielectric constant) from experimental impedance/dielectric spectroscopy data.  相似文献   

4.
Domain wall contributions to the properties of piezoelectric thin films   总被引:1,自引:0,他引:1  
In bulk ferroelectric ceramics, extrinsic contributions associated with motion of domain walls and phase boundaries are a significant component of the measured dielectric and piezoelectric response. In thin films, the small grain sizes, substantial residual stresses, and the high concentration of point and line defects change the relative mobility of these boundaries. One of the consequences of this is that thin films typically act as hard piezoelectrics. This paper reviews the literature in this field, emphasizing the difference between the nonlinearities observed in the dielectric and piezoelectric properties of films. The effect of ac field excitation levels, dc bias fields, temperature, and applied mechanical stress are discussed.  相似文献   

5.
Several SrTiO3 (STO) thin films without electrodes processed by pulsed laser deposition, of thicknesses down to 40 nm, were studied using infrared transmission and reflection spectroscopy. The complex dielectric responses of polar phonon modes, particularly ferroelectric soft mode, in the films were determined quantitatively. The compressed epitaxial STO films on (100) La0.18Sr0.82Al0.59Ta0.41O3 substrates (strain 0.9%) show strongly stiffened phonon responses, whereas the soft mode in polycrystalline film on (0001) sapphire substrate shows a strong broadening due to grain boundaries and/or other inhomogeneities and defects. The stiffened soft mode is responsible for a much lower static permittivity in the plane of the compressed film than in the bulk samples.  相似文献   

6.
In the microcrystalline regime, the electrical (impedance/dielectric) behavior of grain boundary-controlled electroceramics is well described by the brick-layer model (BLM). In the nanocrystalline regime, however, grain boundary layers can represent a significant volume fraction of the overall microstructure. Simple boundary-layer models no longer adequately describe the electrical properties of nanocrystalline ceramics. The present work describes the development of a pixel-based finite-difference approach to treat a nested-cube model (NCM), which is used to investigate the validity of existing models for describing the electrical properties of polycrystalline ceramics over the entire range of grain core vs. grain boundary volume fractions, from the nanocrystalline regime to the microcrystalline regime. The NCM is shown to agree closely with the Maxwell-Wagner effective medium theory.  相似文献   

7.
《Integrated ferroelectrics》2013,141(1):1305-1314
Compositionally graded (Bax,Sr1 ? x)TiO3 [BST] ferroelectric thin films have been received much attention in graded ferroelectric devices due to their unique properties, such as large pyroelectric coefficients, large polarization offset and small temperature coefficient of dielectric constant for microwave tunable devices. Compositionally graded BST thin films were deposited epitaxially on LaAlO3 [LAO] and Nb-doped SrTiO3 [STO:Nb] substrates by pulsed laser deposition. The planar and parallel dielectric properties of compositionally graded BST epitaxial thin films ware investigated in the frequency ranges of 100 Hz ~ 1 MHz as a function of the direction of the composition gradient with respect to the substrate at room temperature. The dielectric properties of the graded BST films depended strongly on the direction of the composition gradient with respect to the substrate. The graded ST → BT films grown on LAO and STO:Nb substrates exhibited a excellent dielectric properties than the graded BT → ST films.  相似文献   

8.
The relaxation motion and memory effect of domain structures have been investigated using mechanical and dielectric loss measurements in BaTiO3 ceramics with grains sizes varied from 1 m to 50 m. The measurements of mechanical loss, elastic modulus, dielectric loss and permittivity show that each phase transition induces a loss peak and an anomaly in the dielectric constants and elastic modulus, furthermore, a number of relaxation loss peaks due to ferroelectric domains in the samples with large grain have been observed. All the relaxation peaks can be analysed by Arrhenius relationship for a wide range of frequency from 10–2 to 106 Hz. The activation energies of relaxation peaks have been determined as 0.92 eV, 0.68 eV, 0.47 eV, and 0.29 eV for the peaks located in the tetragonal, orthorhombic, and rhombohedral phase, with Arrhenius perfactor in the order of 10–13 s. Moreover, one relaxation process is insensitive to ferroelectric phase transitions, and it can exist in all the ferroelectric phases. This implies a possible memory effect of ferroelectric domain structures. Such a motion of domain wall is limited in fine-grained materials. Effect of vacuum annealing on the relaxation peak in the tetragonal phase is also studied to clarify the mechanisms of the peak. These relaxation peaks could be explained by the interaction between different domain walls and the diffusion of oxygen vacancy in the domains.  相似文献   

9.
ABSTRACT

Dielectric nonlinearity is an important characteristic of ferroelectrics. It is assumed that in ferroelectrics the grains are all uniform, in order and cubic-shaped. Moreover, the dielectric constant of the grain boundary does not vary with direct current bias. And then the grains and the grain boundaries were modeled in terms of capacitors and resistors. Based on these analyses, a model for grain size effect on dielectric nonlinearity of ferroelectrics was established. In this model there are some parameters such as the grain size and the grain boundary width, which intensively influence on the dielectric properties of ferroelectric ceramics and thin films. The accuracy of the model prediction was quantitatively verified by our experimental data. The results proved that the above model can describe the grain size effect on dielectric nonlinearity of ferroelectrics.  相似文献   

10.
There have been a number of recent reports of anomalously large permittivities (ε r ≈ 104) in the material CaCu3Ti4O12. The dielectric spectra is characterized by a large, relatively temperature independent permittivity near room temperature which exhibits a dielectric relaxation above 100 K. The crystal structure of CaCu3Ti4O12 can be described as pseudo-perovskite with a cubic unit cell with a lattice constant of 7.391 Å. The ubiquitous occurrence of this dielectric behavior in ceramics, single crystals, and thin films suggests that the polarization is not related to a simple conducting grain/insulating grain boundary-type system. While the precise origin of the dielectric response is not entirely clear, in this work it is shown that processing conditions have a significant influence on the room temperature dielectric properties. Specifically, the permittivity and loss exhibit a strong dependence on the oxygen partial pressure and sintering time. In fact, studies of the effects of sintering time and supporting evidence from capacitance-voltage measurements conclusively show that there is no direct relationship between the permittivity and grain size, as is the case in classical boundary layer systems. Lastly, with aliovalent doping the room temperature dielectric properties can be optimized to provide a high permittivity (ε r ~ 8,000) dielectric with relatively low loss (tan δ < 0.05 at 1 kHz).  相似文献   

11.
(1-x)Ba(Fe0.5Nb0.5)O3 -xBiYbO3 (BFN-xBY) ceramics were prepared by a conventional solid-state reaction method. The dielectric properties and relaxation behavior of BFN-xBY ceramics were analyzed according to dielectric and impedance spectroscopy. Dielectric permittivity of the ceramics increases with increasing temperature below 500 K then remains unchanged up to 700 K, while corresponding loss factor decreases with the increase of temperature below 500 K then increase slowly. Defect compensation mechanism of this system was analyzed in detail. The giant dielectric behavior of the ceramics arises from the internal barrier layer capacitor (IBLC) effect. Polarization effect at insulating grain boundaries between semiconducting grains accompanied by a strong Maxwell-Wagner (MW) relaxation mode. The characteristic of grain boundaries was revealed using impedance spectroscope and the universal dielectric response law.  相似文献   

12.
Abstract

Based on the experimental results of thickness dependences of breakdown voltage and dielectric permittivity for BaTiO3 family ceramics, (Pb, La)TiO3 thin films and commercial multilayer capacitors, surface layer structures are discussed. Surface layers inside ferroelectric materials are consisting of non-ferroelectric Kanzig layer with low dielectric permittivity and with higher concentrations of impurities due to the inter diffusion between substrates and bulk, internal stresses induced by lattice mismatch, cubic-tetragonal phase transition, electric field induced anisotropies and internal bias field (space charge field). The Voltage - Current characteristics (V-I curve), D-E loops of ferroelectric materials show asymmetric behaviors. Saturation phenomena of V-I curves are observed only ferroelectric temperature region. The breakdown voltage almost depends on the non-ferroelectric Kanzig layer and the dielectric permittivity depends on the volume fraction of non-ferroelectric parts. Log-log plots of dielectric permittivity and breakdown voltage suggest that the thickness of non-ferroelectric Känzig layer should be at least more than 10~20 nm and in the grain boundary thickness of bulk ferroelectric materials should be more, especially in the liquid phase sintering, the thickness of grain boundary is a order of 0.1~0.2 μm.  相似文献   

13.
Coplanar waveguide (CPW) transmission lines were fabricated on thin ferroelectric Ba1 – xSrxTiO3 films for tunable microwave applications. The growth of the ferroelectric oxide films was accomplished by a pulsed laser deposition with a partial oxygen background. Microwave properties of the CPW phase shifter were measured using a HP 8510C vector network analyzer from 0.045–20 GHz with –40–40 V of dc bias. A large phase shift angle of 120 at 10 GHz was observed from the CPW (gap = 4m, length = 3 mm) with a 40 V of dc bias change. The dielectric constant of the thin ferroelectric film was extracted from the dimension of the CPW (gap, width, length) and the measured S-parameter by a modified conformal mapping. However, the dielectric constant of the ferroelectric thin film exhibits a gap dependency; dielectric constant (990–830) decreases with increasing gap size (4–19 m, respectively). By adjusting the filling factors of the film, a constant dielectric constant of BST film is found to be 810 ± 5.  相似文献   

14.
The frequency-dependent impedance/dielectric behavior of the brick-layer model (BLM) was investigated vs. grain size and local parameters (resistivity, dielectric constant, and grain boundary width). The simulation shows a maximum in capacitance vs. grain size, governed by the grain boundary-to-grain interior resistivity ratio. The BLM was employed to analyze the 500 °C impedance behavior of polycrystalline cerium dioxide from the nano- (15 nm grain size) to the micro- (4 m grain size) regime. The grain boundary resistivity is orders of magnitude larger than that of the grain interiors in the microcystalline specimen. This contrast is significantly smaller in the nanocrystalline specimens, suggesting enhanced conduction at grain boundaries. The limitations of the BLM for simulating the behavior of complex electroceramic microstructures are discussed.  相似文献   

15.
The lead magnesium niobate [Pb(Mg1/3Nb2/3)O3 or PMN], and its solid solutions with lead titanate (PbTiO3 or PT), are of great interest because of their high electromechanical properties. At large PMN content, these materials exhibit relaxor characteristics with large electrostrictive strains and a large permittivity, while compositions near the morphotropic phase boundary present very interesting piezoelectric properties. So far, properties of these materials in ceramic, thin film and single-crystal form have been investigated. In this paper, we report on preparation and properties of pyrochlore free PMN and 0.65PMN-0.35PT thick films (thickness = 10 to 20 m). The films were prepared from ethyl cellulose ink by screen printing on alumina substrate. The influence of various parameters, such as powder characteristics, inks formulation and films sintering conditions, on films densification are discussed. The dielectric and electromechanical properties of the films were examined. Relaxor-like behaviour was clearly demonstrated in PMN films. The maximum relative permittivity for PMN film was 10000 (at 0.1 kHz), which is lower than in bulk ceramics (17800 at 0.1 kHz) prepared under the same conditions. For 0.65PMN-0.35PT, the maximum relative permittivity was around 15500 against 24000 in the bulk. Several parameters, which might be responsible for the lower permittivity, are discussed. Poled 0.65PMN-0.35PT thick films exhibit relatively large piezoelectric response (d 33 up to 200 pm/V) and unipolar strains approaching 0.1%, making these films of interest for various actuator and transducer applications.  相似文献   

16.
《Integrated ferroelectrics》2013,141(1):665-677
Lanthanum doped lead titanate thin films are the potential candidates for the capacitors, actuators and pyroelectric sensor applications due to their excellent dielectric, and ferroelectric properties. Lanthanum doped lead titanate thin films are grown on platinum coated Si substrates by excimer laser ablation technique. A broad diffused phase transition with the maximum dielectric permittivity (?max) shifting to higher temperatures with the increase of frequency, along with frequency dispersion below Tc, which are the signatures of the relaxor like characteristics were observed. The dielectric properties are investigated from ?60°C to 200°C with an application of different dc fields. With increasing dc field, the dielectric constant is observed to reduce and phase transition temperature shifted to higher temperature. With the increased ac signal amplitude of the applied frequency, the magnitude of the dielectric constant is increasing and the frequency dispersion is observed in ferroelectric phase, whereas in paraelectric phase, there is no dispersion has been observed. The results are correlated with the existing theories.  相似文献   

17.
Lithium tantalate thin films (LiTaO3) with (50:50) stoichiometry were prepared by spin coating method using a polymeric organic solution. The films were deposited on silicon (100) substrates with 4 layers. The substrates were previously cleaned and then the solution of lithium tantalate was deposited by adjusting the speed at 5000 rpm. The thin films deposited were thermally treated from 350 to 600C for 3 hours in order to study the influence of the thermal treatment temperature on the crystallinity, microstructure, grain size and roughness of the final film. X-ray diffraction (XRD) results showed that the films are polycrystalline and secondary phases free. The thickness of films was observed by scanning electron microscopy (SEM). The atomic force microscopy (AFM) studies showed that the grain size and roughness are strongly influenced by thermal treatment.  相似文献   

18.
Calcium modified lead titanate (PT) thick films (thicknesses from 50 to 130 m) are deposited by screen-printing on alumina substrates. First, the influence of the Ca-doping process and of the grain size distribution on the film quality and the piezoelectric coefficients is studied. The permittivity and charge coefficient d 33 values of the films are compared with bulk ceramics ones. The consequences of very low coupling planar factors for PT are discussed. Piezoelectric and elastic properties are calculated with the help of a plane wave model which takes into account the three layers: substrate, electrodes and PT layer.  相似文献   

19.
The dielectric properties of (Sr0.8Ba0.2)1-1.5xBixTiO3 ceramics in the range 0 x 0.18 are investigated. A ferroelectric relaxor behavior is observed. The degree of the diffuseness and the relaxation of the phase transition increases as the Bi content increases. A random electric field is suggested to be responsible for the relaxor behavior observations. The dependence of the diffuseness on the grain size is presented.  相似文献   

20.
王丽娜  陈国华 《电工材料》2011,(3):27-32,41
研究了稀土及CaBi4Ti4O15(CBT)的复合掺杂对BaTiO3(BT)陶瓷微结构及介电性能的影响。结果表明:单独添加CBT使晶粒细化,促进了陶瓷的烧结致密化,居里温度随着CBT含量的增加(≤0.5mol%)而逐渐移向高温端;当CBT含量由0.3mol%增加到0.5mol%时,BT陶瓷的电容量变化率逐渐减小;当CBT含量超过0.5mol%时,电容量变化率又增大。在BaTiO,CBT(BT—CBT)基础上单独添加1.0mol%La2O3,四方率减小,居里点移向低温端;保持La2O3掺杂量不变,随着CeO2含量的增加,BT—CBT陶瓷的晶胞体积呈现先减小后增大的变化趋势,四方率保持不变;1.0mol%La2O3和0.01mol%CeO2掺杂BT—CBT(0.5m01%)陶瓷在-55℃和125℃的电容变化率分别为-14.78%和-11.44%。完全符合EIAX7R标准,有望用于X7R型多层陶瓷电容器的制备。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号