首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
Li1+xCoyMn2-x-yO4的结构及电化学性能研究   总被引:2,自引:1,他引:1  
利用溶液相合成技术把钴掺入到主尖晶石相中制得掺钴尖晶石相材料.所合成的材料具有颗粒分布均匀及结晶性能好等特点.利用X射线粉末衍射仪、傅里叶变换红外分光光度计及扫描电子显微镜对所合成掺杂锂材料的结构性能进行表征.研究表明掺杂钴可提高材料的结构稳定性能,减少锰在电解液中溶解,减少锂离子在材料中迁移电阻.电化学性能测试结果表明所合成掺钴材料Li1.03Co0.05Mn1.92O4具有较好的初始容量及循环稳定性能.  相似文献   

2.
采用固相法合成锂离子正极材料尖晶石相Li1.02CoxCryMn2-x-yO4,研究元素Co、Cr不同掺杂量对产物的结构、晶胞常数、电化学性能和电池内阻的影响.分析表明,掺杂少量的Co、Cr的LiMn2O4依然保持着尖晶石结构;晶胞常数随掺杂量的增加而减小,从而使尖晶石的比表面积增大,有利于提高电池的初始容量;并有效地抑制了充放电过程中的Jahn-Teller效应和Mn^3+的歧化反应.掺杂Co、Cr后Li1.02MnO4初始容量有所下降,且随掺杂量增加而减小,但能明显改善材料的循环性能.  相似文献   

3.
S-Co复合掺杂LiMn2O4的合成与性能   总被引:2,自引:0,他引:2  
为了扩大锂离子电池正极材料LixMn2O4的工作电压范围,在保证良好循环性能的基础上提高材料的容量,本文对S-Co复合掺杂LiMn2O4的合成工艺和电化学性能进行了研究.溶胶-凝胶法合成的各试样均为纯的立方尖晶石相,且结晶状态良好.S—Co复合掺杂综合了S掺杂效应和Co掺杂效应,改善了LiMn2O4的电化学性能,在2.4—4.3V充放电压范围内,初始容量较高,达到170mAh/g,30次循环后容量不但没有衰减而且有一定增加.  相似文献   

4.
电子结构和电导率是析氧反应活性的重要描述符,它们可以通过掺杂来调节.鉴于金属掺杂通常会减少电催化剂的活性位点数量,本工作探究了阴离子掺杂对尖晶石钴酸锌(ZCO)电子结构及其析氧活性的影响.与三价钴为主的ZCO相比,用电负性较低的硫取代氧会提高低自旋态(t2g6eg1)二价钴的占比,其析氧活性要高于低自旋态的三价钴(t2g6eg0).掺硫钴酸锌(ZCO-S)中钴离子和阴离子之间的电子密度的再分布导致了二价钴的增多,而且钴和硫离子间的强共价作用也会加速电荷迁移.ZCO-S在1.65伏(相对于可逆氢电极)下的比活性比原始ZCO高11倍.相反,掺入具有较高电负性和价态的氟(F)并不能有效地改善电子结构,最终导致材料析氧活性的降低.本工作建立了所掺阴离子的电负性与钴酸锌本征析氧活性之间的联系,并提供了一种通过掺杂不同电负性的阴离子来调控尖晶石氧化物的电子结构的简单有效的方法,这为合理设计高性能尖晶石电催化剂提供了新途径.  相似文献   

5.
采用湿化学–后续热处理技术,合成了掺钴尖晶石锰酸锂材料。X射线衍射(XRD)分析结果表明,钴的掺入没有改变材料的Fd3m结构。扫描电子显微镜(SEM)分析表明,所合成的材料颗粒均匀,形貌规整,粒径分布较窄。透射电子显微镜(TEM)结果表明,Li1.035Co0.035Mn1.930O4具有完好的结晶态。充放电测试结果表明,在室温下钴掺杂能够提高材料的电性能。当产物为Li1.035Co0.035Mn1.930O4时,其电性能达到最优:以0.5C充放电,首次放电容量为113 mAh/g,经过100次循环后容量保持率为93.8%,经过4C放电后仍然能够保持0.5C放电容量的76.1%;而未掺钴的Li1.035Mn1.965O4经过4C放电容量仅保持0.5C放电容量的64.8%。电化学阻抗测试结果表明,钴离子的掺杂能够提高锰酸锂材料的锂离子扩散速率。  相似文献   

6.
采用微波与传统加热相结合的方法首次合成了稀土掺杂基锂锰氧化物LiMn2-xNdxO4(x=0.005-0.1)材料,电化学性能测试结果表明材料在掺杂量为x=0.01时表现出最大放电比容量,同时具有很好的循环稳定性,经过100次循环其容量衰减仅为14.9%;XRD测试结果表明在LiMn2O4尖晶石晶格中掺入合适量的Nd对稳定尖晶石骨架结构起重要作用;FTIR分析技术揭示了容量少量衰减的原因。  相似文献   

7.
陈前火  童庆松  连锦明  刘金秀 《功能材料》2004,35(Z1):1846-1850
用液相合成法合成出掺锂、镍的锂锰氧化物,用FT-IR、XRD、XPS对材料的结构及表面物质状态进行了表征,并研究了其在有机电解液中的电化学性能,实验结果表明所合成出的样品具有典型的尖晶石的各衍射峰,但也是Ni-O杂晶相存在,样品表面中锰呈+4价,镍为+2和+3价的混合价,锰化合价的提高有利于晶胞收缩,稳定尖晶石的结构以及材料在深度放电时抑制Jahn-Teller效应的发生.样品的主要放电平台在4.5V以上,循环性能很好,适合做5V锂离子电池的正极材料.  相似文献   

8.
通过水热法制备了一种单质镍掺杂Co3O4(Ni/Co3O4)的粉末,用伏安特性循环法研究了其电化学性能,同时根据第一性原理从原子尺度和电子结构的角度探究了Ni和Co3O4的掺杂机理。首先合成Ni/Co3O4粉末;其次对合成的材料结构及性能进行XRD和SEM表征分析,研究不同钴源及同一钴源不同钴镍比对制备的镍Ni/Co3O4形貌的影响;最后在不同缺陷和不同掺杂的影响下,建立准确的材料性能预测模型,揭示了修饰电极掺杂改性的微观机理。结果表明,不同钴源均制备出了花状形貌的Ni/Co3O4复合材料,电化学性能测试得到其比电容为670F/g;第一性原理计算所得掺杂机理,揭示了电化学修饰的Ni/Co3O4复合电极较大提高了材料的导电性能。  相似文献   

9.
掺杂钴对尖晶石型锂锰氧晶体结构及电化学性能的影响   总被引:3,自引:1,他引:2  
用高温固相法合成了尖晶石型LiMn_2O_4和富锂型Li_(1+x)Mn_(2-x)O_4及掺杂Co尖晶石型LiMn_(2-x)Co_yO_4材料,对材料进行了电化学性能,晶格参数及X射线的研究。实验表明,Co的掺入,样品形成了填隙型化合物,其掺杂量对样品的晶体结构及电化学性能有较大的影响。当掺量达0.15时,样品的首次放电容量达129.0mAh·g~(-1),同时充放寿命大有改善。  相似文献   

10.
尖晶石锰酸锂(LiMn2O4)具有理论比容量高、热稳定性高、价格低廉、循环性能良好等特点,深受研究者的亲睐,目前已有固相法、燃烧合成法和共沉淀等多种制备方法。为了进一步改善该材料的循环性能,研究者提出了元素掺杂的策略,元素掺杂改性是基于改变材料的晶体结构或材料中部分元素的平均价态来提高材料的电化学性能和结构的稳定性。Si4+掺杂可以取代材料中的部分Mn4+,从而使材料产生Jahn-Teller效应的离子数降低和尖晶石锰酸锂的八面体体积扩大,提高电化学性能。为此,综述了近几年来单一硅元素掺杂及硅与其他元素复合掺杂改性尖晶石型锰酸锂正极材料的研究进展。  相似文献   

11.
Cobalt was used to modify the surface of spinel LiMn2O4 by a solution technique to produce Co^3 -modified surface material (COMSM). Cobalt was only doped into the surface of LiMn2O4 spinel. XPS(X-ray photoelectron spectroscopy) analysis confirms the valence state of Co^3 . COMSM has stable spinel structure and can prevent active materials from the corrosion of electrolyte. The ICP(inductively coupled plasma) determination of the spinel dissolution in electrolyte showed the content of Mn dissolved from COMSM was smaller than that from the pure spinel. AC impedance patterns show that the charge-transfer resistance (Rct) for COMSM is smaller than that for pure spinel. The particles of COMSM are bigger in size than those of pure spinel according to the micrographs of SEM(scanning electron microscopy). The determinations of the electrochemical characterization show that COMSM has both good cycling performance and high initial capacity of 124.1 mA/h at an average capacity loss of 0.19 mAh/g per cycle.  相似文献   

12.
The Li1.02NbxMn2-xO4 (x=0,0.005,0.01,0.02,0.04 and 0.1) materials were prepared by solid-state reaction method in which Li2CO3 , electrolytic MnO2 and Nb2O5 were used as reactants. The influences of the Nb5+ doping on structure, morphology and electrochemical performance were systemically investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), cyclic voltammetry (CV) and AC impedance. XRD test showed that the prepared samples had single spinel structure although there was impurity phase of LiNbO3 existing in Li1.02NbxMn2-xO4 phase after Nb5+ doping. The doped materials with Nb5+ had smaller lattice parameters and crystal volume compared with pristine Li1.02Mn2O4. The endurance of overcharge was largely improved. In addition, the small amount of Nb5+ doping could increase the material conductivity.  相似文献   

13.
元素掺杂是提升催化剂性能的重要方法。研究采用快速沉淀法制备了钴掺杂氧化铜(Co-doped CuO)纳米催化材料,在可见光条件下,20 min内其活化的过氧硫酸氢钾复合盐(PMS)对罗丹明B染料的降解率达到96%以上,远优于同等条件制备的CuO。本研究还考察了溶液pH、染料初始浓度、催化剂用量等对降解效率影响。钴掺杂后氧化铜纳米颗粒由三维针梭状结构转变为近二维薄带状结构。同时钴掺杂提高了CuO的平带电位进而提升了电荷转移效率。XPS及EPR结果表明钴掺杂能够提高CuO的氧空位含量进而提升催化活性。捕获剂实验结果表明反应过程中的主要活性物种为空穴(h+VB),且羟基自由基(·OH)、单线态氧(1O2)、超氧自由基(·O2)、硫酸根自由基(SO4·)也参与了降解反应。最后,本文初步阐明了Co-doped CuO协同可见光活化PMS降解有机污染物的反应机理。  相似文献   

14.
LiMxMn2-xO4正极材料的表面改性机理研究   总被引:2,自引:0,他引:2  
采用溶胶-凝胶包裹法对尖晶石LiMn2O4及其阳离子掺杂LiM0.1Mn1.9O4(M=Li,Ni)正极材料进行了表面改性研究.X射线衍射及电子探针线扫描分析表明,表面改性以后的晶粒仍为尖晶石结构,表面改性离子Co的浓度由表及里逐步减小.电解液溶蚀实验及电化学循环测试表明,表面改性后的正极材料LiM0.1Mn1.9O4的抗溶蚀性明显增强,循环性能优良.性能改善的原因是表面改性以后,尖晶石晶粒表层Mn^3 离子浓度降低,Mn^4 离子浓度大大增加,减少了Mn^3 发生歧化反应的机会.  相似文献   

15.
采用氢氧化物共沉淀-高温固相焙烧法合成了富锂正极材料Li1+x[Ni0.36Mn0.64]1-xO2(x=0.12,0.15,0.18,0.2)。采用XRD表征其结构,SEM表征其形貌,恒电流充放电和循环伏安测试其电化学性能。其中,XRD结果表明各样品都具有α-NaFeO2型层状结构。结果表明:室温下以30mA/g的电流密度,在4.6~2.75V的电压范围内充放电,x=0.15的首次放电比容量为237.9mAh/g,经50次循环后容量保持率为98%。研究发现,层状富锂镍锰正极材料中的Li2MnO3组分在充放电过程中会逐渐向尖晶石相转变,这是容量衰减的主要原因。  相似文献   

16.
改善尖晶石锰酸锂的大倍率性能是目前锂离子电池的重点研究方向之一。本研究用高温固相法合成掺K+的尖晶石锰酸锂, 研究K+提高锰酸锂倍率性能的微观机制。结果表明, 尽管随着电流密度增大, 电极的放电比容量下降, 但掺K+提高材料的大倍率性能效果显著, 如最佳掺K+量(物质的量分数)1.0%时, 在10C (1C=150 mA·g-1)下比容量提高了一倍, 远高于0.5C下的1.9%。原因在于掺K+后, 首先, 锰酸锂的晶胞体积扩大, Li-O键变长, Li、Mn阳离子混排程度降低, 载流子(Mn3+)量增多; 其次, 电极极化和电荷迁移阻抗降低, 提高了材料的充放电可逆性、导电性及锂离子扩散能力; 再者, [Mn2]O4骨架更稳定, 减小了电化学过程中内应力变化, 抑制了晶体结构变化和颗粒破碎; 最后, 钾离子掺杂使制备过程中材料团聚, 从而减小电解液与电极的接触面积, 减轻电解液的侵蚀, 抑制锰的溶解。  相似文献   

17.
采用高温固相合成法制备富锂锰基正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54-x)Zn_xO_2(x=0,0.03,0.06,0.10),Zn~(2+)掺杂对Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2的表面特性和电化学性能都有影响。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、拉曼光谱分析、充放电测试、倍率特性测试、循环性能测试,分析了该合成材料的晶体结构、形貌特征、微观结构和电化学性能。富锂锰基正极材料为a-NaFeO_2层状结构,R-3m空间群,结晶度高,结构稳定性好,其中Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.48)Zn_(0.06)O_2的电化学性能较好。掺杂Zn~(2+)可以提高富锂锰基正极材料的充放电比容量、倍率性能、循环性能等电化学性能。  相似文献   

18.
采用嵌段聚合物P123为表面活性剂,以氯化铝和氯化钴为无机先驱物,采用溶胶-凝胶法合成介孔铝酸钴纳米粒子。X射线衍射(XRD)表明样品具有单一的尖晶石型结构,利用氮气吸附-脱附比表面测定仪测得不同焙烧温度样品的比表面积,发现700℃焙烧的样品比表面积最大,其比表面积为59.3m2/g,孔径为10.8nm。紫外可见光谱仪测示表明纳米铝酸钴样品为明亮的蓝色,在545nm、585nm和625nm处有三重吸收峰。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号