首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为解决抑制挖掘机驾驶室壁板结构的振动与内部噪声的问题,首先建立挖掘机驾驶室白车身结构有限元模型,并通过对结构的计算模态和实验模态进行对比,验证有限元建模方式的正确性;接着在白车身有限元模型的基础上添加玻璃与车门,建立声学边界元模型、声-固耦合模型。然后将试验采集的驾驶室悬置加速度信号作为激励计算驾驶室白车身结构振动,进一步分析计算司机右耳的声学响应。通过场点声压的实验值与仿真值对比,验证声学仿真模型的准确度;最后基于间接边界元法进行板件声学贡献度分析,找到对驾驶员右耳声压贡献大的板块,通过粘贴不同厚度的阻尼层进行降噪对比并进行实验验证,实验结果表明,通过板块阻尼处理后驾驶室的降噪效果良好。  相似文献   

2.
通过建立内燃机车声固耦合有限元模型,并在底架与转向架接触处施加X、Y、Z方向上的单位激扰力载荷,计算出司机室在30 Hz~150 Hz的声场响应。分析内燃机车司机室声固耦合模态、司机室振动响应、司机室空腔的声学模态以及司机室的声场响应得知,司机室的声压级在68 Hz、76 Hz、86 Hz、98 Hz、124 Hz由于共振产生明显峰值;而在98 Hz、124 Hz与车身壁板及车内声腔声学共振使司机室声压急剧上升。该结论可为司机室减振降噪提供参考。  相似文献   

3.
基于声传递向量法的路面激励引起车内噪声的仿真研究   总被引:1,自引:0,他引:1  
为降低路面激励引起的车内噪声,通过构造路面,采用声传递向量法(Acoustic Transfer Vector,ATV)以及1/3倍频程滤波的方法,求解驾驶员耳旁20~250 Hz频段内各中心频率处的A级声压以及驾驶员感受到的总声压,以真实反映人耳对路面激励引起的车内噪声的感受。将沥青路面激励下某车型的悬架与车身之间的作用力作为激振力,应用动力学软件进行仿真;采用有限元法中的响应分析计算车身振动的速度响应;以车身振动速度响应作为边界条件,利用基于边界元的声传递向量法计算出车内声学响应。获得的路面激励与车内声响应之间的关系可为车内噪声的控制、悬架系统的优化提供参考。  相似文献   

4.
为了研究高速载客列车车体结构振动及车内声学特性,建立高速列车有限元模型,对全车体进行模态分析和轨道谱响应分析,并基于声与结构耦合对车体内腔进行声学模态分析。车体前200阶固有模态频率跨度为0.62~100.27 Hz,前6阶0.62~1.51 Hz为车身整体相对于转向架的低频振动,其余各阶为车身结构的弹性振动。当施加我国200 km/h等级提速线路通用轨道谱激励时,体振动在0~2.00 Hz的低频有较大响应。车体内腔前200阶声学模态频率跨度为0~126.66 Hz,在20~100 Hz之间模态比较密集。  相似文献   

5.
以跨座式单轨牵引齿轮箱为研究对象,综合考虑驱动电机扭矩波动引起的外部动态激励和啮入冲击激励、刚度激励、误差激励等内部动态激励,建立跨座式单轨牵引齿轮箱动力学有限元分析模型,基于模态叠加法求解齿轮箱振动模态与振动响应,并提取箱体外表面振动位移作为噪声预估边界条件;进而,建立单轨牵引齿轮箱声学边界元分析模型,借助直接边界元法对齿轮箱辐射噪声进行预估,得到箱体表面声压与场点声压值;而后,搭建跨座式单轨牵引齿轮箱振动噪声测试试验台,开展振动响应与辐射噪声测试。研究结果表明,箱体动态响应频域曲线的峰值及箱体表面声压最大值均出现在齿轮副的啮合频率及其倍频处;仿真所得的箱体振动加速度、外声场点辐射噪声与齿轮箱振动噪声试验台实测结果吻合良好,验证振动噪声预估方法的合理性。  相似文献   

6.
为降低某型重型卡车怠速噪声,建立驾驶室声-振耦合有限元模型,测试驾驶室四个悬置点被动侧加速度数据,以此作为仿真激励载荷计算驾驶室司机耳旁声压,仿真与试验结果具有较高的一致性.针对怠速工况32 Hz、64 Hz和96 Hz峰值频率,计算各频率的模态参与因子,对模态参与因子较高的模态阶次进行叠加,获取各峰值频率对应的模态应...  相似文献   

7.
针对某特种车车内噪声水平较高问题,建立车身结构与声固耦合有限元分析模型,并进行车身振动频响分析和车内声压响应分析;通过仿真结果与实车道路试验结果对比,验证车身结构和声固耦合有限元模型的有效性;利用耦合声学边界元法进行驾驶室内部声学特性研究,识别出不同工况的主要噪声频率;并对影响车内噪声的车身板件进行声学贡献分析,找到对车内声压贡献最大的板件;最后对声学贡献大的板件粘贴阻尼材料来对车内进行降噪,车内噪声得到较为明显改善。  相似文献   

8.
为了降低车室低频噪声,采用对声学贡献较大的车室地板、后地板、前围板、顶棚、前车门内板及后车门内板的厚度参数为因子,以车身质量、车身模态频率、驾驶员头部处声压峰值和声压均方根值为响应,采用最优拉丁超立方试验设计方法采集样本数据进行因子空间设计。利用径向基神经网络方法,建立了4个响应关于6个因子的误差小、精度高的近似模型,并对所建立的近似模型进行误差分析。以驾驶员头部处声压峰值最小为目标函数,板件厚度参数为自变量,驾驶员头部处声压均方根值、车身质量和车身模态频率为约束条件。采用自适应模拟退火算法对板件厚度进行优化设计,其优化结果表明,驾驶员头部处最大声压峰值所在的频率158 Hz处的声压降低了4.45 d B,134 Hz处的声压峰值降低了5.47 d B,在其他声压峰值较高的频率处,测点声压均有不同程度降低,说明在满足约束条件同时,通过优化有效地降低车室空腔噪声,提高车辆的声学舒适性。  相似文献   

9.
利用履带式沙滩清洁车驾驶室有限元模型进行了自由模态计算,将结果与试验模态对比;确认建模的精确性,用LMS Virtual.Lab软件进行模态叠加;然后得到驾驶室的频率响应。再将结构振动速度作为边界条件进行驾驶室室内声场仿真计算,获得了2Hz~200Hz频率激励下的驾驶员左右耳处的声压值。通过板件贡献量分析找出对场点声压峰值贡献较大的板件,最后依据国标对驾驶室室内声场特性作出评价;表明该驾驶室具有良好的动态声学设计。  相似文献   

10.
为预测车室低频噪声,建立车身结构有限元模型和声场有限元模型,并使用网格映射方法将结构-声场有限元模型耦合。建立发动机激励动力学模型和路面随机激励动力学模型,利用Matlab/Simulink计算发动机悬置点激励力和悬架处激励力,并通过快速傅里叶变换得到激励力的幅频特性。加载发动机激励力和悬架激励力,在Virtual.Lab中进行声学响应分析和板件声学贡献分析,预测车室噪声并确定声压贡献较大的板件。最后通过板件厚度参数优化,有效地降低测点声压。  相似文献   

11.
随着箱梁结构在高速铁路中的广泛应用,其引起的结构振动和噪声问题日益受到关注。本文以京沪高速铁路32m简支箱梁为研究对象,首先建立高架轨道箱梁结构声学计算模型,该模型利用一1/10缩尺模型的仿真与实测结果验证,再通过建立高速列车-轨道耦合动力学模型计算作用箱梁结构上的作用力,并以此作为荷载边界条件施加于箱梁有限元模型上,计算箱梁结构的振动响应。最后,将箱梁结构振动响应作为声学边界条件,采用间接边界元法分析支座刚度对箱梁结构声辐射衰减规律的影响。研究结果表明:在3种不同刚度支座条件下,梁体声功率辐射影响主要集中在1~48Hz,支座刚度越大,声功率辐射值及峰值越小。箱梁最大声压级主要集中在1~20Hz;各场点声压级变化与声功率变化趋势较为接近;三种支座在相同场点的声压级变化趋势较为接近,但支座刚度越大,声压级越小;在同一场点,支座刚度越大,声压级峰值越小。在48~100Hz内,支座刚度值对梁体的声功率辐射及场点声压级大小影响不大。  相似文献   

12.
基于多体系统动力学理论、有限元和边界元方法,使用多种仿真软件建立车身结构有限元模型、整车刚柔耦合系统模型和车厢声学边界元模型,对路面不平度和发动机振动两种激励进行模拟,计算了这两种激励条件下20~150 Hz频率范围内车厢内各场点的A计权声压级。以降低多个场点声压级峰值为目标,综合考虑车厢壁板对各场点声压级峰值的声学贡献度大小和正负性质,对不同壁板组合进行阻尼减振降噪处理,最终确定最佳阻尼降噪方案。结果表明:场点声压级峰值的大小和频率分布与激振力能量的频率分布有关,粘贴阻尼材料在降低噪声的同时,也会改变声压级的频率分布。降噪措施能普遍降低车厢内乘员耳旁的声压级。  相似文献   

13.
车内低频噪声一直是汽车NVH研究关注的重点问题,常需要找到对噪声影响较大的振动结构进行改进,但是振动对场点的贡献并不能代表对整个声场噪声的贡献量。针对多峰值多场点的车内声场问题,引入"总相干系数"和"相干系数和"的概念对现有的偏相干分析方法进行改进。对某型客车的车内噪声进行小波包分解,得到车内声场的声学特性,确定研究的频率范围。通过对各板件振动与车内测点噪声信号进行偏相干分析,确定对车内声场影响较大的结构,并在实车上实施了改进措施。结果表明,车内噪声测点声压级降低0.5 d B~2 d B,为有效降低客车车内噪声提供了指导方向。  相似文献   

14.
针对某型3缸汽油发动机运用声全息技术进行发动机噪声源识别。首先在台架上对发动机进行1m声压级瞬态测试,由此确认进气侧的噪声辐射最大。然后在进气侧进行声全息试验,通过分析声压云图和噪声频谱,识别出该发动机进气侧的主要噪声源位于发电机处,噪声峰值频带为1 000 Hz~2 500 Hz。为了确定噪声源具体位置,结合近场声压法和表面振动法,在声全息识别出的主要噪声源位置进行补测试验,发现发电机的振动和近场噪声峰值频带均与1 000 Hz~2 500 Hz重合,由此可以确定该发动机进气侧的主要噪声源是发电机。综合运用声全息技术和传统的噪声源识别方法对发动机进行噪声源识别试验,不仅可以提高传统识别方法的效率,还可以弥补声全息技术精度不高的缺陷。  相似文献   

15.
城市轨道交通成为人们出行的主要交通方式,轨道交通噪声产生的问题有待解决。文章以某城市地铁线路为研究对象,现场实测列车经过时产生的振动和噪声,主要分析U型梁振动产生的低频结构辐射噪声并建立声学预测模型。在分析实测数据同时对减振降噪措施效果进行了分析,由于结构辐射噪声主要在低频段,故振动分析频段为 4~200Hz,结构辐射噪声分析频段为20~200 Hz。结果表明,梁体振动与辐射噪声有很强的关联性,变化规律基本一致;安装钢轨波导消振吸声器前后,底板振级和辐射声压级都降低5~8 dB左右,有明显减振降噪作用;U型梁结构振动的辐射噪声在梁体周围的传播有很强的指向性,梁体正上方与正下方声压级最大,但腹板外侧声压级相对较小。  相似文献   

16.
车身结构上的阻尼材料优化布置对车内振动和噪声控制有重要的意义。以某实车的白车身为研究对象,基于有限元法和边界元法对车内声腔进行声场分析和车身板块进行声学贡献量分析,找出车内场点噪声声压峰值频率及对应的贡献量较大的板块。进而基于白车身模态振型分析,对车身部件上的局部约束阻尼的敷设位置进行优化配置。分析了阻尼优化布置前后分别在悬置、前悬架和后悬架等不同位置处激励下的车内噪声,确认了降噪优化方案的有效性,并在实车上进行了验证。结果表明,对车身相关板块进行局部阻尼处理后,降低车内噪声2 d B(A),证明了该方法的有效性。  相似文献   

17.
随着城市轨道交通的快速发展,地铁运行时产生的振动所引起沿线建筑物室内振动与二次结构噪声问题引起人们的广泛关注.基于某城市轨道交通沿线6层居民楼1楼现场测试,对不同扣件工况下地铁沿线敏感建筑物的室内振动与二次结构噪声问题进行测试与分析.研究表明:地铁沿线建筑物室内各振动、噪声测点峰值频率基本一致,在扣件A工况下峰值频率约...  相似文献   

18.
对利用DFB(分布反馈式)光纤激光器进行水声探测时的弯曲振动问题进行了分析与实验研究。总结了采用非平衡干涉仪解调系统解调的DFB光纤激光水听器的声压灵敏度计算公式;基于梁的弯曲理论,通过数值方法计算了两端固定的DFB光纤激光器在50Hz~2000Hz频率范围内的声压灵敏度,绘制了该频率范围内的频响曲线:采用振动液枉法对一支DFB光纤激光器在该频率范围内进行了实验研究,实验数据具有良好的可重复性,实验结果与理论分析吻合。表明了细长型结构的DFB光纤激光器在水声场中很容易由于弯曲振动而引入较大的非声压振动的干扰信号,影响其水声探测性能,有必要在DFB光纤激光水听器探头的设计中考虑这一因素。  相似文献   

19.
利用多喷嘴对置式气流床气化炉热模试验装置,对两喷嘴对置撞击火焰声学特性和压力波动进行了测量与实验研究,并通过Hilbert-Huang变换对火焰噪声信号及压力信号进行频谱分析。结果表明,气化炉内中高频压力波动主要由火焰撞击区内复杂的燃烧状况引发,并产生50~100 Hz频段的火焰噪声。射流火焰噪声受气化炉内低频压力波动影响,并且因来自撞击区的反向流的作用,火焰噪声的幅值和波形都会受到一定的影响。撞击区的火焰噪声信号与燃烧状况有一定的对应关系,可作为气化炉内火焰状况诊断的一种方式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号