首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
研究了表面包覆Ni-P对PuNi3型贮氢合金La0.67Mg0.33Ni2.5Co0.5电极的电化学性能的影响.结果表明:包覆镍处理改善了贮氢合金电极的循环稳定性.线性极化扫描和电化学阻抗谱等分析结果表明,包覆后合金电极的极限电流密度(I1),交换电流密度(I0)以及电化学阻抗均有较好的改善,说明电荷转移和氢的扩散能力得到提高.经25次电化学循环后的电极合金金相观察和分析表明,包覆Ni-P处理没有有效抑制其粉化,这与该类型贮氢合金电化学吸氢时氢化物膨胀较大有关.  相似文献   

2.
为了改善La-Mg-Ni-Co系合金电极的循环稳定性,对铸态合金La0.75Mg0.25Ni3.5 Co0.4在0.3MPa压力氩气保护下进行不同温度的退火(1123,1223和1323K),保温时间均为10h.研究了退火温度对合金的电化学性能的影响.X射线衍射(XRD)分析结果表明,铸态及1123K温度退火后合金主要由LaNi5,(La,Mg)2(Ni,Co)7相以及少量LaNi2相组成;退火温度为1223和1323K时,合金中LaNi2相消失,合金主要由LaNi5,(La,Mg)2(Ni,Co)7及(La,Mg)(Ni,Co)3相组成.随退火温度升高,最大放电容量从341.2mAh/g增加365.8mAh/g;循环稳定性得到改善,100次充放电循环后容量保持率从铸态合金的58.63%提高到1323K时的72.91%.  相似文献   

3.
采用铸造及快淬工艺制备了La—Mg-Ni系(PuNi3型)贮氢合金La0.7Mg0.3Ni2.55-Co0.45Cux(x=0~0.4),分析测试了铸态及快淬态合金的电化学性能与微观结构,研究了Cu替代Ni及快淬工艺对合金微观结构及电化学性能的影响。结果表明:铸态及快淬态合金具有多相结构,包括(La,Mg)Ni3相和LaNi5相和一定量的LaNi2相。快淬处理对合金的相组成没有影响,但使合会的衍射峰趋于均匀一致。Cu替代Ni使合金的电化学容量下降,但使合金的循环稳定性及放电电压特性得到改善。快淬可提高合金的循环稳定性,但使合金的容量下降。  相似文献   

4.
采用X射线衍射、电子探针和电化学测试研究了La0.67Mg0.33Ni3.0-xAlx(x=0.0-0.35)合金的相结构和电化学性能。XRD结果和EPMA观察表明:La0.67Mg0.33Ni3.0合金由LaNi3相和La2Ni7相组成。然而La0.67Mg0.33Ni3.0-xAlx(x=0.1,0.2,0.35)合金不含LaNi3相。研究结果表明Al替代Ni改变了La0.67Mg0.33Ni3.0合金的相结构,Al替代Ni不利于La0.67Mg0.33Ni3.0合金中LaNi3相的形成。此外,随Al含量的增加,La0.67Mg0.33Ni3.0-xAlx(x=0.1,0.2,0.35)合金的相结构也发生了变化。WDS分析表明:随La0.67Mg0.33Ni3.0-xAlx合金中X的增加,Al在LaNis相中的含量增加,但Al在LaNi2相的含量很少并且几乎不随X变化。电化学性能测试表明:Al替代Ni提高了La0.67Mg0.33Ni3.0合金电极的循环稳定性。但La0.67Mg0.33Ni3.0-xAlx合金电极的放电容量却随Al含量的增加而明显降低。  相似文献   

5.
工作温度对贮氢合金REN3.55Mn0.4Co0.75Al0.3电化学性能的影响   总被引:4,自引:0,他引:4  
针对电动车用大型动力Ni/MH电池工作温度较高的特点,系统地研究了3种工作温度(25℃,40℃和60℃)对贮氢合金RENi3.55Mn0.4Co0.75Al0.3电化学性能的影响。研究结果表明,RENi3.55Mn0.4Co0.75Al0.3合金具有单一的CaCu5型LaNi5相结构,当工作温度从25℃提高至60℃时,合金的放氢平衡压力从0.04MPa升高至0.13MPa,同时放氢平台的宽度变窄,倾斜度增大,从而导致该合金的放氢量降低;随着温度的升高,合金的活化性能得到显著改善,但合金的最大放电容量和循环稳定性明显降低;而中高温(40℃和60℃)时合金的高倍率放电性能则明显优于室温(25℃)时的高倍率放电性能。  相似文献   

6.
掺杂Fe对贮氢合金Ml(Ni—Co—Mn—Ti)5电化学性能的影响   总被引:5,自引:3,他引:5  
针对混合稀土金属中含有不定量的Fe杂质及贮氢电极合金在熔炼过程中容易混入Fe杂质的特点,采用在Ml(Ni-Co-Mn-Ti)5合金中入为地添加不同量Fe的方法,系统地研究了Fe掺 对贮氢电极合金Ml(Ni-Co-Mn-Ti)5电化学性能的影响。  相似文献   

7.
用快淬工艺制备了纳米晶和非晶Mg2Ni型Mg2 -xLaxNi (x=0,0.2,0.4,0.6)贮氢电极合金,获得长度连续,厚度约为30μm,宽度约为25 mm的薄带.用XRD、SEM和HRTEM分析了快淬合金薄带的微观结构,测试了合金薄带的电化学性能及电化学交流阻抗谱(EIS).快淬无La合金具有典型的纳米晶结构,...  相似文献   

8.
磁热处理对La—Mg—Ni-Co合金微结构与电化学性能的影响   总被引:1,自引:0,他引:1  
考察La0.67Mg0.33Ni2.5Co0.5合金分别在铸态、热处理及磁热处理3种状态下的微结构及其电化学性能.通过XRD衍射及SEM分析贮氢合金的物相组成和电极合金循环后的形貌,研究Co部分替代Ni以及有无外加磁场下热处理对合金微结构与电化学性能的作用规律.结果表明:经Co部分取代的La-Mg-Ni铸态合金经过50次循环后,放电容量保持率从64.46%提高到74.80%;经磁热处理后,La0.67Mg0.33Ni2.5Co0.5合金的最大放电容量为324.80mA·h/g,较常规热处理合金的容量提高了10.59%,放电容量保持率为83.07%,其放电平台更为宽广且平坦:磁热处理的引入进一步降低贮氢合金电极的极化电阻,改善合金电极动力学性能.  相似文献   

9.
采用室温下缓冲溶液的浸渍处理方法对Mm(NiCoMnAl)5 合金进行表面改性,研究了缓冲溶液pH值和浸渍处理时间对合金电化学性能的影响。试验结果表明:采用pH值为4.5的缓冲溶液浸渍处理2h可以改善Mm(NiCoMnAl)5合金的活化性能,初始放电容量和循环稳定性,但对高倍率放电性能的改善作用并不明显。  相似文献   

10.
研究了Co和Cu取代Ni以及磁热处理对La0.67Mg0.33Ni3-xMx(M=Co,Cu)(x=0,0.5)合金吸放氢反应热力学和动力学性能的影响。结果表明,Ni被Co和Cu元素部分替代后,合金的吸放氢量增大,放氢温度降低,吸放氢特征时间(tc)减小,吸放氢过程中的扩散活化能降低。磁热处理明显地提高了3种铸态合金的吸氢量,增大了吸放氢平台宽度,改善了合金的吸放氢动力学性能,其中磁热处理对La0.67Mg0.33Ni2.5Co0.5合金改性效果最好,吸放氢量分别为1.40%和1.32%(质量分数,下同),放氢峰所对应的温度为77.8℃,吸放氢特征时间"tc"为91.4和379.3s,吸放氢扩散活化能分别为16.3和23.3kJ/mol。  相似文献   

11.
La0.67Mg0.33Ni2.5Co0.5贮氢合金的制备和MH电极性能研究   总被引:9,自引:0,他引:9  
采用高频感应熔炼方法制备了PuNi3型La0.67Mg0.33Ni2.5Co0.5合金;用X射线衍射分析和电化学方法研究了添加不同Mg含量以补偿Mg元素烧损时合金的组织结构和电化学性能。X射线衍射分析(XRD)表明,铸态合金由.PuNi3型主相和少量的CaCu5型第二相组成,铸态合金经1223K和10h退火处理后,CaCu5型第二相可明显减少,其中Mg增加10%时得到纯度较高的PuNi3型组织。电化学测试表明,增加适当Mg含量和进行退火热处理能明显提高和改善合金电极容量、循环稳定性和大电流放电性能。与AB5型和。482型Laves相贮氢合金比较,PuNi3型La0.67Mg0.33Ni2.5Co0.5贮氢合金具有电极容量高及优良的大电流放电性能。  相似文献   

12.
用X射线衍射(XRD)、中子衍射(NRD)和Rietveld全谱拟合方法分析和研究PuNi3型La0.67Mg0.33Ni2.5Co0.5合金及其充氘后的氘化物晶体结构。结果表明,退火合金La0.67Mg0.33Ni2.5Co0.5由主相(La,Mg)Ni3相(PuNi3-type)和少量LaMgNi4相(MgCu4Sn-type)及La2Ni7相(Ce2Ni7-type)组成;Co元素在(La,Mg)Ni3相中主要分布在AB5单元中6c和AB5/AB2单元共格处的18h位置上;合金充满氘后形成了La0.67Mg0.33Ni2.5Co0.5D4.0,D原子在(La,Mg)Ni3相中主要占据RM5单元中的36i2、18h5、6c4及RM2单元内的6c1、18h3和18h1位置上,其中RM5单元中的氘含量为6.5(1)D/f.u.,而RM2单元中吸纳的氘量为3.2(2)D/f.u.。充氘后La0.67Mg0.33Ni2.5Co0.5D4.0晶胞整体基本呈各向同性膨胀(δa/a=7.1%,δc/c=9.1%),但在RM2单元中其各向异性膨胀较大(δc/c=15.8%,δV/VRM2=32.8%),而在RM5单元中各...  相似文献   

13.
La0.7Mg0.3Ni2.8Co0.5贮氢电极合金经过适当热处理后(1123K),最大放电容量、循环稳定性、高倍率放电性能(HRD)、交换电流密度(I0)以及极限电流密度(IL)都有明显改善,铸态合金电极的最大放电容量为392mAh/g,放电电流密度,Id=2000mA/g时,HRD2000=74.0%,I0=266.7mA/g,IL=3425.5mA/g;经1123K保温8h退火的合金电极的最大放电容量提高到414mAh/g,HRD2000=76.2%,I0=407.9mA/g,IL=3753.6mA/g。X射线衍射(XRD)分析表明,衍射峰宽度随着退火温度的升高而变窄,其原因是合金经退火处理相结构的变化和成分的均匀化。  相似文献   

14.
研究了退火温度对A287型La1.5Mg0.5Ni7.0合金的相结构和电化学性能的影响。结果表明:铸态合金由LaNi,相、LaMgNi4相、(La,Mg)Ni3相以及Gd2Co7型相组成,退火处理后,合金由Gd2Co7型相、Ce2Ni7型相和PuNi3型(La,Mg)Ni3相组成:随着退火温度升高,PuNi3型相的丰度减小,ce2Ni7型相的丰度增加,(La,Mg)Ni3相的a轴参数、c轴参数和晶胞体积均增大;经1073K保温24h退火后,合金电极具有最高的放电容量(391.2mAh/g),退火温度升高,合金的最大放电容量略有降低:合金电极的循环稳定性随着退火温度的升高不断提高,在1173K时合金电极经150次循环后其电极容量保持率C150/Cmax=82%;合金的高倍率放电性能(HRD)随退火温度升高略有增加,在1173K时,合金电极的HRD最好(HRD900=89.0%);交换电流密度I0、极限电流密度I1及氢扩散系数D随着退火温度的升高而增大。  相似文献   

15.
Mg58Al42储氢合金的制备及其电化学性能   总被引:1,自引:0,他引:1  
采用机械合金化技术制备了Mg58Al42储氢合金并借助于X射线衍射仪、PARM273A和M5210电化学综合测试仪研究了其在不同球磨时间下的物相结构以及放电容量和耐腐蚀等电化学性能. 结果表明:合金粉末经高能球磨后产生了Mg17Al12新相,随着球磨时间的增加,衍射峰的相对强度下降,衍射峰变宽,合金的平均晶粒尺寸降低,内应力增大.合金的放电容量随球磨时间的延长先增加而后则降低,其中球磨20 h时,放电容量最大.合金的动电位极化曲线出现了钝化现象,合金腐蚀电流密度随球磨时间的延长先增大而后降低.合金的交流阻抗谱均由单容抗弧组成,电极反应受合金/电解质溶液界面的电荷迁移所控制.  相似文献   

16.
采用Ce﹑Pr和Nd少量混合稀土部分替代La,采用感应熔炼及高温退火工艺制备(La0.7Ce0.1PrxNd0.2-x)0.67Mg0.33Ni3.0(x=0,0.1,0.2)系列贮氢合金。结果表明,与La0.67Mg0.33Ni3.0合金相比较,混合稀土元素加入后对合金的相组成没有本质影响,(La0.7Ce0.1PrxNd0.2-x)0.67Mg0.33Ni3.0(x=0,0.1,0.2)合金微观组织由主相PuNi3型结构与LaMgNi4第二相组成;随混合稀土加入和Pr含量x的增加,PuNi3型相晶体结构的晶胞体积和a轴减小,但c轴及轴比c/a增大。电化学性能测试结果表明,用混合稀土Ce﹑Pr和Nd少量替代La后均能明显改善合金的综合电化学性能,合金的电化学容量与La0.67Mg0.33Ni3.0合金(392.0mAh/g)比较虽略有下降,但随Pr含量x的增加,混合稀土合金电极容量有所提高(384mAh/g);经100次循环后,混合稀土合金电极容量保持率从La0.67Mg0.33Ni3.0合金时的64%提高到82%~83%,其高倍率放电性能则从78.4%提高到了89%~91%。  相似文献   

17.
为了降低AB5犁储氢合金的成本,对低钴的Ml0.9Mg0.1Ni3.4Co0.3Al0.3合金的组织结构和性能进行了研究,并与工业储氢合金MmNi3.55Co0.75Mn0.4Al0.3进行了对比。实验结果表明:此低钴合金是由LaNi5主相和LaNi3第二相构成。它们的储氢晕(ω,%)分别为1.36%和1.37%,最大放电容量分别为320mAh/g和324mAh/g,循环稳定性为:300次充放电循环后,2种合金剩余容晕都是88%。但Ml0.9Mg0.1Ni3.4Co0.3Al0.3的高倍率放电性能明显优于MmNi3.55Co0.75Mn0.4Al0.3合金。主要原因是由于LaNi3第二相的乍成不仪提高了合金颗粒表面的电化学催化活性,而且提高了结构韧性从而抵消了低钴合金颗粒粉化的不利影响。  相似文献   

18.
采用感应熔铸+热处理的方法制备了La(0.67-x)(Ti/Zr)xMg0.33Ni2.5Co0.5合金.结构分析表明,合金由PuNi3型相、Ce2Ni7型相、MgCu4Sn型相和Ti-Ni或Zr-Ni合金相等组成;Ti/Zr元素在PuNi3型物相和Ce2Ni7型物相中没有固溶,而是单独以Ti-Ni和Zr-Ni合金的形式存在;随Ti和Zr含量的增多,合金中PuNi3型物相的单胞体积呈线性减小趋势.Ti和Zr元素的掺入提高了合金的吸放氢平台,降低了合金的贮氢量.电化学研究表明,Ti/Zr元素显著提高了合金电极的高倍率放电性能,但过量的Zr元素会恶化合金电极的电催化活性;Ti/Zr元素的掺入对合金电极循环稳定性有一定改善,但同时会降低合金电极的电化学放电容量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号