首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate the impact of replacing dietary fish oil (FO) with linseed oil (LO) on growth, fatty acid composition and regulation of lipid metabolism in Eurasian perch (Perca fluviatilis) juveniles. Fish (17.5 g initial body weight) were fed isoproteic and isoenergetic diets containing 116 g/kg of lipid for 10 weeks. Fish fed the LO diet displayed lower growth rates and lower levels of DHA in the liver and muscle than fish fed the FO diet, while mortality was not affected by dietary treatment. However, DHA content recorded in the liver and muscle of fish fed the LO diet remained relatively high, despite a weight gain of 134 % and a reduced dietary level of long‐chain polyunsaturated fatty acids (LC‐PUFA), suggesting endogenous LC‐PUFA biosynthesis. This was supported by the higher amounts of pathway intermediates, including 18:4n‐3, 20:3n‐3, 20:4n‐3, 18:3n‐6 and 20:3n‐6, recorded in the liver of fish fed the LO diet in comparison with those fed the FO diet. However, fads2 and elovl5 gene expression and FADS2 enzyme activity were comparable between the two groups. Similarly, the expression of genes involved in eicosanoid synthesis was not modulated by dietary LO. Thus, the present study demonstrated that in fish fed LO for 10 weeks, growth was reduced but DHA levels in tissues were largely maintained compared to fish fed FO, suggesting a physiologically relevant rate of endogenous LC‐PUFA biosynthesis capacity.  相似文献   

2.
Dietary supplementation with marine omega‐3 polyunsaturated fatty acids (n‐3 PUFA) can have beneficial effects on a number of risk factors for cardiovascular disease (CVD). We compared the effects of two n‐3 PUFA rich food supplements (freeze‐dried Odontella aurita and fish oil) on risk factors for CVD. Male rats were randomly divided into four groups of six animals each and fed with the following diets: control group (C) received a standard diet containing 7 % lipids; second group (HF high fat) was fed with a high‐fat diet containing 40 % lipids; third group (HFFO high fat+fish oil) was fed with the high‐fat diet supplemented with 0.5 % fish oil; and fourth group (HFOA high fat+O. aurita) received the high‐fat diet supplemented with 12 % of freeze‐dried O. aurita. After 8 weeks rats fed with the high‐fat diet supplemented with O. aurita displayed a significantly lower bodyweight than those in the other groups. Both the microalga and the fish oil significantly reduced insulinemia and serum lipid levels. O. aurita was more effective than the fish oil in reducing hepatic triacyglycerol levels and in preventing high‐fat diet‐induced steatosis. O. aurita and fish oil also reduced platelet aggregation and oxidative status induced by high fat intake. After an OA supplementation, the adipocytes in the HFOA group were smaller than those in the HF group. Freeze‐dried O. aurita showed similar or even greater biological effects than the fish oil. This could be explained by a potential effect of the n‐3 PUFA but also other bioactive compounds of the microalgae.  相似文献   

3.
Dietary saturated fat (SFA) intake has been associated with elevated blood lipid levels and increased risk for the development of chronic diseases. However, some animal studies have demonstrated that dietary SFA may not raise blood lipid levels when the diet is sufficient in omega‐3 polyunsaturated fatty acids (n‐3PUFA). Therefore, in a randomised cross‐over design, we investigated the postprandial effects of feeding meals rich in either SFA (butter) or vegetable oil rich in omega‐6 polyunsaturated fatty acids (n‐6PUFA), in conjunction with n‐3PUFA, on blood lipid profiles [total cholesterol, low density lipoprotein cholesterol (LDL‐C), high density lipoprotein cholesterol (HDL‐C) and triacylglycerol (TAG)] and n‐3PUFA incorporation into plasma lipids over a 6‐h period. The incremental area under the curve for plasma cholesterol, LDL‐C, HDL‐C, TAG and n‐3PUFA levels over 6 h was similar in the n‐6PUFA compared to SFA group. The postprandial lipemic response to saturated fat is comparable to that of n‐6PUFA when consumed with n‐3PUFA; however, sex‐differences in response to dietary fat type are worthy of further attention.  相似文献   

4.
Whilst aquaculture feed is increasingly formulated with the inclusion of plant oils replacing fish oil, and increasing research effort has been invested in understanding the metabolic effects of reduced dietary n‐3 long chain poly unsaturated fatty acids (n‐3 LC‐PUFA), relatively little information is available on the potential direct metabolic roles of dietary alpha‐linolenic acid (ALA, 18:3n‐3) and alpha‐linolenic acid/linoleic acid (LNA, 18:2n‐6) ratio in cultured marine finfish species. In this study, four plant oil based diets, with varying ALA/LNA ratio (0.0, 0.5, 1.0 and 1.5) were fed to juvenile large yellow croakers (Larimichthys crocea) and compared to a fish oil‐based control diet (CD) to evaluate the resulting effects on growth, nonspecific immunity, anti‐oxidant capacity and related gene expression. High dietary LNA negatively impacted fish growth performance, nonspecific immunity and antioxidant capacity, but growth and immunity were maintained to levels comparable to CD by increasing the ratio of dietary ALA/LNA. The over‐expression of genes associated with inflammation (cyclooxygenase‐2 and interleukin‐1β) and fatty acid oxidation (carnitine palmitoyl transferase I and acyl CoA oxidase) in croakers fed high concentrations of LNA were reduced to levels comparable to those fed CD by increasing dietary ALA/LNA. This study showed that dietary ALA, by increasing the overall n‐3/n‐6 PUFA ratio, exerts direct anti‐inflammatory and antioxidant effects, similar to those exerted by dietary n‐3 LC‐PUFA.  相似文献   

5.
Omega‐3 (n‐3) long‐chain polyunsaturated fatty acids (LC‐PUFA) are essential components of the diet of all vertebrates. The major dietary source of n‐3 LC‐PUFA for humans has been fish and seafood but, paradoxically, farmed fish are also reliant on marine fisheries for fish meal and fish oil (FO), traditionally major ingredients of aquafeeds. Currently, the only sustainable alternatives to FO are vegetable oils, which are rich in C18 PUFA, but devoid of the eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) abundant in FO. Two new n‐3 LC‐PUFA sources obtained from genetically modified (GM) Camelina sativa containing either EPA alone (ECO) or EPA and DHA (DCO) were compared to FO and wild‐type camelina oil (WCO) in juvenile sea bream. Neither ECO nor DCO had any detrimental effects on fish performance, although final weight of ECO‐fed fish (117 g) was slightly lower than that of FO‐ and DCO‐fed fish (130 and 127 g, respectively). Inclusion of the GM‐derived oils enhanced the n‐3 LC‐PUFA content in fish tissues compared to WCO, although limited biosynthesis was observed indicating accumulation of dietary fatty acids. The expression of genes involved in several lipid metabolic processes, as well as fish health and immune response, in both liver and anterior intestine were altered in fish fed the GM‐derived oils. This showed a similar pattern to that observed in WCO‐fed fish reflecting the hybrid fatty acid profile of the new oils. Overall the data indicated that the GM‐derived oils could be suitable alternatives to dietary FO in sea bream.  相似文献   

6.
Chickens can hepatically synthesize eicosapentaenoic acid (20:5 n‐3) and docosahexaenoic acid (22:6 n‐3) from α‐linolenic acid (ALA; 18:3 n‐3); however, the process is inefficient and competitively inhibited by dietary linoleic acid (LNA; 18:2 n‐6). In the present study, the influence of dietary high‐oleic acid (OLA; 18:1 n‐9) soybean oil (HOSO) on egg and tissue deposition of ALA and n‐3 polyunsaturated fatty acids (PUFA) synthesized from dietary ALA was investigated in laying hens fed a reduced‐LNA base diet supplemented with high‐ALA flaxseed oil (FLAX). We hypothesized that reducing the dietary level of LNA would promote greater hepatic conversion of ALA to very long‐chain (VLC; >20C) n‐3 PUFA, while supplemental dietary HOSO would simultaneously further enrich eggs with OLA without influencing egg n‐3 PUFA contents. Nine 51‐week‐old hens each were fed 0, 10, 20, or 40 g HOSO/kg diet for 12 weeks. Within each group, supplemental dietary FLAX was increased every 3 weeks from 0 to 10 to 20 to 40 g/kg diet. Compared to controls, dietary FLAX maximally enriched the total n‐3 and VLC n‐3 PUFA contents in egg yolk by 9.4‐fold and 2.2‐fold, respectively, while feeding hens 40 g HOSO/kg diet maximally attenuated the yolk deposition of ALA, VLC n‐3 PUFA, and total n‐3 PUFA by 37, 15, and 32%, respectively. These results suggest that dietary OLA is not neutral with regard to the overall process by which dietary ALA is absorbed, metabolized, and deposited into egg yolk, either intact or in the form of longer‐chain/more unsaturated n‐3 PUFA derivatives.  相似文献   

7.
Phospholipids (PL) containing n‐3 polyunsaturated fatty acids (PUFA) have beneficial effects of maintaining and promoting health compared with triacylglycerols (TAG) containing n‐3 PUFA or general PL. This study evaluated the effects of dietary PL containing n‐3 PUFA and elucidated the effects of the glycerophosphate structure and n‐3 PUFA on fatty acid (FA) metabolism in rats. Rats were fed a basal diet containing soybean oil alone, TAG containing n‐3 PUFA (1.8 %), soybean PL (2.7 %), PL containing n‐3 PUFA (2.7 %), or TAG containing n‐3 PUFA (1.8 %) + soybean PL (2.7 %). The present n‐3 PUFA‐supplemented diets had similar FA compositions, and the PL diets had similar PL compositions. TAG containing n‐3 PUFA reduced serum TAG contents, but did not affect serum cholesterol contents compared with soybean oil alone. PL diets containing n‐3 PUFA and the combination of TAG containing n‐3 PUFA and soybean PL resulted in decreased serum and liver TAG contents compared with the diet containing soybean oil alone, reflecting enhanced liver FA β‐oxidation. The results of this study show that TAG containing n‐3 PUFA with added soybean PL affects serum and liver TAG and cholesterol contents to a similar degree as PL containing n‐3 PUFA. TAG containing n‐3 PUFA and soybean PL are widely used as functional food ingredients and pharmaceutical constituents and are inexpensive compared with PL containing n‐3 PUFA. Therefore, the combination of TAG containing n‐3 PUFA and soybean PL has potential as a useful and inexpensive component of functional foods.  相似文献   

8.
Obesity is characterized by an increase in fat mass primarily as a result of adipocyte hypertrophy. Diets enriched in omega (n)‐3 polyunsaturated fatty acids (PUFA) are suggested to reduce obesity, however, the mechanisms are not well understood. We investigated the effect of n‐3 PUFA on adipocyte hypertrophy and the key genes involved in adipocyte hypertrophy. Female C57BL/6 mice were fed semi‐purified diets (20 % w/w fat) containing high n‐3 PUFA before mating, during pregnancy, and until weaning. Male and female offspring were continued on high n‐3 PUFA (10 % w/w), medium n‐3 PUFA (4 % w/w), or low n‐3 PUFA (2 % w/w) diet for 16 weeks postweaning. Adipocyte area was quantified using microscopy, and gonadal mRNA expression of acyl CoA:diacylglycerol acyltransferase‐2 (DGAT‐2), fatty acid binding protein‐4 (FABP‐4) and leptin were measured. The high n‐3 PUFA group showed higher levels of total n‐3 PUFA in gonadal TAG compared to the medium and low n‐3 PUFA groups (P < 0.001). The high n‐3 PUFA male group had a lower adipocyte area compared to the medium and low n‐3 PUFA group (P < 0.001); however, no difference was observed in females. The high n‐3 PUFA male group showed lower mRNA expression of FABP‐4, DGAT‐2 and leptin compared to the low n‐3 PUFA group, with no difference in females. Plasma lipid levels were lower in the high n‐3 PUFA group compared to the other groups. Our findings show for the first time that n‐3 PUFA prevents adipocyte hypertrophy by downregulating FABP‐4, DGAT‐2 and leptin; the effects are however sex‐specific.  相似文献   

9.
10.
The health promoting effects of omega‐3 polyunsaturated fatty acids (n‐3 PUFA) are mainly ascribed to the n‐3 long chain (LC)‐PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). However, their intake is mostly below the recommended daily intake. A possible way to raise their average intake is to enrich food products with n‐3 LC‐PUFA. Addition of autotrophic microalgae to the diet of the laying hens can increase the level of these fatty acids in the egg yolk. Moreover, depending on the microalgal species, other nutritionally interesting algal carotenoids can also be transferred to the egg yolk. As a consequence egg yolk colour changes may occur. A survey conducted among 511 people showed that they will buy n‐3 PUFA enriched products, such as enriched eggs, and are even prepared to pay more for these products. However, the change of the yolk colour must be taken into account, since consumer' acceptability decreases when a deeply red yolk colour is obtained.  相似文献   

11.
The sphingosine kinase 1 (SphK1)/sphingosine‐1‐phosphate (S1P) pathway plays a key role in inflammation. Parenteral nutrition containing n‐3 polyunsaturated fatty acids (n‐3 PUFA) may regulate inflammatory reactions. The aim of this study is to determine whether n‐3 PUFA may improve inflammatory responses by neutralizing SphK1 signaling. Rat models of parenteral nutrition, cecal ligation and puncture (CLP)‐induced sepsis were generated. Male Sprague–Dawley rats were operated for CLP on day 2 after venous catheterization. The rats were randomized to receive normal saline (NS; n = 20), parenteral nutrition (PN; n = 20), or PN + fish oil (FO; n = 20) for 5 days. The daily intake of fish oil (1.25–2.82 g EPA and 1.44–3.09 g DHA per 100 ml) in the FO group was approximately 1.8 g/kg body weight/day. Rats in the control group (n = 10) were subjected to sham operation and received a chow diet. Spleen tissues were collected for SphK1 and S1P receptor expression analysis. Our data showed that n‐3 PUFA ameliorated the survival rate. SphK1 expression and its enzymatic activity were significantly upregulated in sepsis rats. Furthermore, mRNA and protein levels of S1PR3, but not S1PR1, were also facilitated after CLP. However, PN + FO dramatically decreased SphK1 mRNA level and its enzymatic activity. S1PR3 expression was also attenuated by FO addition. In conclusion, the anti‐inflammatory effect of n‐3 PUFA may be linked to the inhibition of the SphK1/S1P pathway in a rat model of parenteral nutrition and CLP‐induced sepsis.  相似文献   

12.
A study was carried out to determine the profiles of fatty acids in fermented milks and dairy derivatives made with milk fat substituted by polyunsaturated fatty acid (PUFA)‐enriched fat. In order to improve the organoleptic properties of those products, whey protein concentrates (WPC) were added during the manufacturing process. Interest was focused during manufacturing and storage period on the contents of “healthy” fatty acids, mainly conjugated linoleic acid and n‐3 PUFA. Contents of these fatty acids were not affected by the manufacture practices and neither did addition of WPC during manufacturing nor cold storage cause their decrease. Percentages of total n‐3 fatty acids in fat from dairy derivatives enriched in PUFA after 21 d of storage (1.45%) were very close to those obtained before processing (1.39%). Contents did not differ either substantially when WPC were added during manufacturing (1.46%). The increase of volatile compounds was also examined. Although a slight decrease in the total volatile content was observed, percentages of different compounds were not modified when milk fat was substituted by PUFA enriched fat.  相似文献   

13.
Lipid metabolism, inflammation, oxidative stress and endothelial function play important roles in the pathogenesis of cardiovascular disease (CVD), which may be affected by an imbalance in the n‐6/n‐3 polyunsaturated fatty acid (PUFA) ratio. This study aimed to investigate the effects of the n‐6/n‐3 PUFA ratio on these cardiovascular risk factors in rats fed a high‐fat diet using plant oils as the main n‐3 PUFA source. The 1:1 and 5:1 ratio groups had significantly decreased serum levels of total cholesterol, low‐density lipoprotein cholesterol, and proinflammatory cytokines compared with the 20:1 group (p < 0.05). Additionally, the 20:1 group had significantly increased serum levels of E‐Selectin, von Willebrand factor (vWF), and numerous markers of oxidative stress compared with the other groups (p < 0.05). The 1:1 group had a significantly decreased lipid peroxide level compared with the other groups (p < 0.05). Serum levels of malondialdehyde, reactive oxygen species and vWF tended to increase with n‐6/n‐3 PUFA ratios increasing from 5:1 to 20:1. We demonstrated that low n‐6/n‐3 PUFA ratio (1:1 and 5:1) had a beneficial effect on cardiovascular risk factors by enhancing favorable lipid profiles, having anti‐inflammatory and anti‐oxidative stress effects, and improving endothelial function. A high n‐6/n‐3 PUFA ratio (20:1) had adverse effects. Our results indicated that low n‐6/n‐3 PUFA ratios exerted beneficial cardiovascular effects, suggesting that plant oils could be used as a source of n‐3 fatty acids to prevent CVD. They also suggested that we should be aware of possible adverse effects from excessive n‐3 PUFA.  相似文献   

14.
Due to the scarcity of marine fish oil resources, the aquaculture industry is developing more efficient strategies for the utilization of dietary omega‐3 long‐chain polyunsaturated fatty acids (n‐3 LC‐PUFA). A better understanding of how fish utilize EPA and DHA, typically provided by fish oil, is needed. However, EPA and DHA have different physiological functions, may be metabolized and incorporated into tissues differently, and may vary in terms of their importance in meeting the fatty acid requirements of fish. To address these questions, Atlantic salmon were fed experimental diets containing, as the sole added dietary lipid source, fish oil (positive control), tallow (negative control), or tallow supplemented with EPA, DHA, or both fatty acids to ~50 or 100 % of their respective levels in the positive control diet. Following 14 weeks of feeding, the negative control diet yielded optimum growth performance. Though surprising, these results support the notion that Atlantic salmon requirements for n‐3 LC‐PUFA are quite low. EPA was largely β‐oxidized and inefficiently deposited in tissues, and increasing dietary levels were associated with potential negative effects on growth. Conversely, DHA was completely spared from catabolism and very efficiently deposited into flesh. EPA bioconversion to DHA was largely influenced by substrate availability, with the presence of preformed DHA having little inhibitory effect. These results clearly indicate EPA and DHA are metabolized differently by Atlantic salmon, and suggest that the n‐3 LC‐PUFA dietary requirements of Atlantic salmon may be lower than reported and different, if originating primarily from EPA or DHA.  相似文献   

15.
To study the mechanisms responsible for the hypotriglyceridemic effect of marine oils, we monitored the effects of high dietary intake of n-3 PUFA on hepatic and muscular beta-oxidation, plasma leptin concentration, leptin receptor gene expression, and in vivo insulin action. Two groups of male Wistar rats were fed either a high-fat diet [28% (w/w) of saturated fat] or a high-fat diet containing 10% n-3 PUFA and 18% saturated fat for 3 wk. The hypotriglyceridemic effect of n-3 PUFA was accompanied by increased hepatic oxidation of palmitoyl-CoA (125%, P < 0.005) and palmitoyl-L-carnitine (480%, P < 0.005). These findings were corroborated by raised carnitine palmitoyltransferase-2 activity (154%, P < 0.001) and mRNA levels (91%, P < 0.01) as well as by simultaneous elevation of hepatic peroxisomal acyl-CoA oxidase activity (144%, P < 0.01) and mRNA content (82%, P < 0.05). In contrast, hepatic carnitine palmitoyltransferase-1 activity remained unchanged despite a twofold increased mRNA level after n-3 PUFA feeding. Skeletal muscle FA oxidation was less affected by dietary n-3 PUFA, and the stimulatory effect was found only in peroxisomes. Dietary intake of n-3 PUFA was followed by increased acyl-CoA oxidase activity (48%, P < 0.05) and mRNA level (83%, P < 0.05) in skeletal muscle. The increased FA oxidation after n-3 PUFA supplementation of the high-fat diet was accompanied by lower plasma leptin concentration (-38%, P < 0.05) and leptin mRNA expression (-66%, P < 0.05) in retroperitoneal adipose tissue, and elevated hepatic mRNA level for the leptin receptor Ob-Ra (140%, P < 0.05). Supplementation of the high-fat diet with n-3 PUFA enhanced in vivo insulin sensitivity, as shown by normalization of the glucose infusion rate during euglycemic hyperinsulinemic clamp. Our results indicate that the hypotriglyceridemic effect of dietary n-3 PUFA is associated with stimulation of FA oxidation in the liver and to a smaller extent in skeletal muscle. This may ameliorate dyslipidemia, tissue lipid accumulation, and insulin action, in spite of decreased plasma leptin level and leptin mRNA in adipose tissue.  相似文献   

16.
The rate at which dietary α‐linolenic acid (ALA) is desaturated and elongated to its longer‐chain n‐3 polyunsaturated fatty acid (PUFA) in humans is not agreed upon. In this study, we applied a methodology developed using rodents to investigate the whole‐body, presumably hepatic, synthesis‐secretion rates of esterified n‐3 PUFA from circulating unesterified ALA in 2 healthy overweight women after 10 weeks of low‐linoleate diet exposure. During continuous iv infusion of d5‐ALA, 17 arterial blood samples were collected from each subject at ?10, 0, 10, 20, 40, 60, 80, 100, 120, 150, 180, and 210 min, and at 4, 5, 6, 7, and 8 h after beginning infusion. Plasma esterified d5‐n‐3 PUFA concentrations were plotted against the infusion time and fit to a sigmoidal curve using nonlinear regression. These curves were used to estimate kinetic parameters using a kinetic analysis developed using rodents. Calculated synthesis‐secretion rates of esterified eicosapentaenoate, n‐3 docosapentaenoate, docosahexaenoic acid, tetracosapentaenate, and tetracosahexaenoate from circulating unesterified ALA were 2.1 and 2.7; 1.7 and 5.3; 0.47 and 0.27; 0.30 and 0.30; and 0.32 and 0.27 mg/day for subjects S01 and S02, respectively. This study provides new estimates of whole‐body synthesis‐secretion rates of esterified longer‐chain n‐3 PUFA from circulating unesterified ALA in human subjects. This method now can be extended to study factors that regulate human whole‐body PUFA synthesis‐secretion in health and disease.  相似文献   

17.
Algae high in docosahexaenoic acid (DHA) may provide a source of long‐chain omega‐3 polyunsaturated fatty acids (LCn‐3PUFA) for inclusion in the diet of lambs to improve the LCn‐3PUFA status of meat. The effect of background LCn‐3PUFA status on the metabolism of high DHA algae is, however, unknown. The aim of the current study was to determine whether the response to a high in DHA algae supplement fed to lambs for six weeks prior to slaughter was mediated by a maternal periconceptional diet. Forty Poll Dorset × Border Leicester × Merino weaner lambs were allocated to receive either a ration based on oat grain, lupin grain, and chopped lucerne (control) or the control ration with DHA‐Gold? algae included at 1.92 % DM (Algae) based on whether the dams of lambs had previously been fed a diet high in n‐3 or n‐6 around conception. LCn‐3PUFA concentration was determined in plasma and red blood cells (RBC) prior to and following feeding. The concentrations of EPA and DHA in the plasma and RBC of lambs receiving the control ration were significantly (p < 0.001) lower when lambs received the ration for 14 days compared with pre‐feeding concentrations. The concentrations of EPA and DHA were also significantly (p < 0.001) higher when lambs consumed the Algae ration compared with the control ration for 42 days. The increase in EPA and DHA was, however, significantly (p < 0.05) lower if lamb dams had previously been fed a diet high in n‐6 at conception. Assessing the previous nutrition and n‐3 status of lambs may allow producers to more accurately predict the likely response to supplements high in LCn‐3PUFA, particularly, DHA.  相似文献   

18.
Eutrophication results in a deficiency of n‐3 LC‐PUFA (long‐chain polyunsaturated fatty acids) in aquatic food chains, affecting fish nutrition and physiology. The trophic transfer of FA (fatty acids) to fish species of different feeding habits was investigated in two reservoirs in southeast Brazil—the mesotrophic Ponte Nova Reservoir (PN) and the hypereutrophic Billings Reservoir (Bil). Total FA profile of stomach contents and adipose tissue, triacylglycerols (TAG), and phospholipids (PL) from liver and muscle of the omnivorous Astyanax fasciatus and the carnivorous Hoplias malabaricus were analyzed by gas chromatography. A prevalence of n‐6PUFA, as 18:2n‐6 (linoleic acid) and 20:4n‐6 (arachidonic acid, ARA) was observed in the stomach contents and in the tissues of A. fasciatus from the PN reservoir. In contrast, n‐3 LC‐PUFA, as 20:5n‐3 (eicosapentaenoic acid, EPA) was accumulated in fish tissues from Bil, resulting in higher n3/n6 and EPA/ARA ratios, compared to fish from PN. This differential FA accumulation was also observed for H. malabaricus, but differences were slightly minor, and no changes were observed in the EPA/ARA ratios between fish from both reservoirs. Regardless reservoir, FA profiles of TAG resembled that of their diet, whereas FA profiles of PL were more conservative and mainly comprised by LC‐PUFA. We conclude that reservoir trophic status affected the FA composition of food resources available to these fish species, resulting in differential allocation of n‐3 and n‐6 FA. As expected, FA profile of the investigated fish species also reflected their feeding habit and physiological demands.  相似文献   

19.
Non‐alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder. Stress promotes the onset of the NAFLD with a concomitant increment in the activity of the hepatic 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD‐1). However, the interaction between the stress and a carbohydrate‐enriched diet for the development of NAFLD in young animals is unknown. In the present study, we evaluated the impact of chronic stress on the hepatic triacylglycerol level of young rats fed or not with a high sucrose‐diet. For doing this, 21‐day old male Wistar rats were allocated into 4 groups: control (C), chronic restraint stress (St), high‐sucrose diet (S30), and chronic restraint stress plus a 30 % sucrose diet (St + S30). Chronic restraint stress consisted of 1‐hour daily session, 5 days per week and for 4 weeks. Rats were fed with a standard chow and tap water (C group) or 30 % sucrose diluted in water (S30 group). The St + S30 groups consumed less solid food but had an elevated visceral fat accumulation in comparison with the St group. The St group showed a high level of serum corticosterone and a high activity of the hepatic 11β‐HSD‐1 concomitantly to the augmentation of hepatic steatosis signs, a high hepatic triacylglycerol content, and hepatic oxidative stress. Conversely, the high‐sucrose intake in stressed rats (St + S30 group) reduced the hepatic 11β‐HSD‐1 activity, the level of serum corticosterone, and the hepatic triacylglycerol content. Present findings show that a high‐sucrose diet ameliorates the triacylglycerol accumulation in liver promoted by the restraint stress in young male rats.  相似文献   

20.
The fatty acid composition of the diet has various effects on atherosclerosis risk factors. Dietary saturated fatty acids (SFA) and trans‐unsaturated fatty acids increase the low‐density lipoprotein (LDL)‐/high‐density lipoprotein (HDL)‐cholesterol ratio in serum, while these fats do not have a significant bearing on serum triglyceride levels. By contrast, dietary monounsaturated fatty acids (MUFA), n‐6 polyunsaturated fatty acids (PUFA), and α‐linolenic acid (C18:3n‐3) similarly reduce LDL cholesterol concentrations, while their influence on serum HDL cholesterol and triglycerides is not appreciable. Dietary long‐chain n‐3 PUFA slightly increase serum LDL cholesterol concentrations, but are nevertheless considered salubrious with regard to serum lipids due to the distinct triglyceride‐lowering effects. MUFA‐rich compared to n‐6 PUFA‐rich diets strongly reduce the in vitro oxidizability of LDL. The available studies on this subject also suggest that n‐3 PUFA in the small amounts usually present in the diet are not unduly harmful. These findings are consistent with reports from observational studies: the amount of SFA is positively and the amount of MUFA and n‐6 PUFA in the diet is inversely associated with the risk of cardiovascular disease in most epidemiological studies. The available studies have had an impact on current dietary guidelines, which unanimously recommend that most of the dietary fat should be in the form of MUFA, while the amount of SFA and trans fatty acids in the diet should be as low as possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号