首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用Gleeble-3800热模拟试验机研究了600~1350 ℃范围内高铁刹车盘用CrMoV钢的高温热塑性,利用扫描电镜观察断口形貌,利用光学显微镜观察断口截面显微组织。结果表明:试验钢在600~1350 ℃范围内存在3个脆性温度区间,即熔点~1320 ℃的第Ⅰ脆性区、1100~1000 ℃区间的第Ⅱ脆性区和800~650 ℃区间的第Ⅲ脆性区,晶界V(C,N)和VN的析出是造成第Ⅱ脆性区塑性恶化的主要原因,在制定轧制工艺时应避开这些区域。  相似文献   

2.
在Gleeble-1500热模拟试验机上进行了Nb-Ti与Nb-V复合微合金化钢的高温拉伸试验,并用Thermo-Calc软件计算了两种试验钢不同析出相的析出温度,结合断口形貌对比分析了两种钢的高温塑性特点。结果表明:根据断面收缩率的变化规律,可以将Nb-Ti与Nb-V复合微合金化钢的整个塑性温度区间分为第Ⅰ脆性区、高塑性区和第Ⅲ脆性区,其中Nb-Ti钢的塑性区间温度范围分别为1320℃~熔点,880~1320℃和715~880℃;Nb-V钢塑性区间温度范围是1310℃~熔点,905~1310℃和705~905℃。Thermo-Calc软件计算结果表明钛元素对Al N的析出有较强的抑制作用,同时也抑制了微细Nb(C,N)的析出,能够改善含铌微合金钢的高温塑性;Nb-V钢第Ⅲ脆性区温度范围较Nb-Ti钢更宽,整体断面收缩率更差。  相似文献   

3.
Q235B-2B硼微合金化钢的高温塑性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Gleeble-3800热应力-应变热模拟试验机对某钢厂生产的Q235B-2B硼微合金化钢230 mm×1800 mm连铸板坯进行高温力学性能测试,得到了600~1350 ℃温度区间的高温强度和热塑性曲线图。试验结果表明,此钢种第三脆性温度区为750~1000 ℃,低塑性区间较宽。通过扫描电镜观察,能谱分析发现晶界有许多MnS析出物以及少量的BN与MnS复合析出物。硼微合金化钢裂纹敏感性比较高,这是由于硼在晶界的偏聚以及第二相粒子在晶界的大量析出脆化晶界,影响钢的热塑性,结合热力学理论分析,降低氮含量可减少第二相粒子析出,改善钢种的热塑性。  相似文献   

4.
利用Gleeble-3500热模拟试验机在温度为1000~700℃的条件下进行了热拉伸实验,结合应力-应变曲线、析出物、断口组织形貌的观察及分析,研究了冷速对铸坯高温塑性的影响。结果表明,冷速的提高会降低低碳微合金钢的高温塑性,使第Ⅲ脆性区间变窄;冷速从1℃/s增加至3℃/s对钢中含Nb、Ti析出物的形貌、尺寸和γ-α相变开始温度区间无显著影响。较低冷速更有利于晶间铁素体的长大;铁素体薄膜的长大是第Ⅲ脆性区间塑性改善的主要原因。  相似文献   

5.
通过Gleeble 1500热模拟试验机对含钛微合金钢SAPH440的连铸坯在1400~600℃温度区间内的高温延塑性进行了测试,对试样的断口形貌及组织进行了观察。确定tL~1350℃之间为连铸坯的第I脆性区,950~725℃之间为连铸坯的第Ⅲ脆性区;第Ⅲ脆性区塑性降低主要是由连铸坯中Al N的析出和晶界网状铁素体的形成造成。提高连铸机顶弯或矫直温度大于950℃可以减少连铸坯表面裂纹的产生。  相似文献   

6.
在Gleeble-1500热模拟实验机上对28MnCr5齿轮钢进行高温拉伸实验,得出了28MnCr5钢试样第III脆性温度区分别为600~950℃,并用扫描电镜分析了塑性区与脆性区的断口形貌。晶界滑移则是28MnCr5产生脆性最低点的原因。  相似文献   

7.
利用Gleeble-3500热变形模拟试验机研究了中等铌含量(0.05%)低碳微合金钢的高温塑性。结果表明,试验钢在1350℃以上区域为第一高温塑性低谷;介于1250~950℃,出现一个高温塑性很好的区域,断面收缩率达到60%以上;而介于750~650℃则为第二高温塑性低谷。此外,铌可降低奥氏体向铁素体的转变温度,扩大奥氏体单相区,从而使试验钢第二高温塑性的低谷左移。  相似文献   

8.
应用Gleeble3800热模拟试验机测试了Q345E钢连铸坯的高温力学性能,通过观察试样断口形貌分析变形断裂机理。试验结果表明:在600~1 300℃范围内Q345E钢的脆性温度区间为750~900℃,塑性温度区间为950~1 300℃,为指导Q345E钢的连铸生产提供理论依据。  相似文献   

9.
通过用Gleeble-3500热机械模拟试验机对化学成分(质量分数,%)为:C 0.07,Si 0.05,Mn 1.8,Al 0.03,Ti 0.02,Cu 0.3,Cr 0.5,Nb 0.015,Ni 0.17的A钢的高温力学性能展开研究,以0.001s-1应变速率,在温度范围650 ~1 350 ℃之间做一组高温拉伸试验,测得抗拉强度和断面收缩率.结果表明:A钢整体呈现较好的塑性,塑性低谷区温度范围较小.在775~1 250℃之间,断面收缩率均高于70%,塑性良好,第Ⅲ脆性区在650~775℃之间,A钢在700~750℃存在明显的塑性低谷.第Ⅲ脆性区断裂主要为沿晶脆性断裂,这主要是由于铁素体沿奥氏体晶界析出所致.实际连铸生产过程中可以避开此脆性区间,矫直温度尽量高于800℃.  相似文献   

10.
利用Gleeble-3800热模拟试验机测试了30Mn VS非调质钢连铸坯的高温塑性,通过扫描电镜对拉伸试样的断口进行了观察分析,并应用金相显微镜对不同测试温度断口附近显微组织进行观察,分析了各温度区域变形断裂机理。结果表明:30Mn VS非调质钢的第Ⅲ脆性温度区间为650~930℃,塑性温度区间为930~1300℃。因此,该钢连铸坯在实际矫直过程中,过矫直点温度应高于930℃。  相似文献   

11.
 应用Gleeble3800热模拟试验机测试了Q345E钢连铸坯的高温力学性能,通过观察试样断口形貌分析变形断裂机理。试验结果表明:在600℃~1300℃范围内Q345E钢的脆性温度区间为750℃~900℃,塑性温度区间为950℃~1300℃,为指导Q345E钢的连铸生产提供理论依据。  相似文献   

12.
无取向硅钢相变点及其高温力学性能   总被引:1,自引:0,他引:1  
使用Gleeble3800热模拟试验机对无取向硅钢进行CCT曲线测定及高温拉伸试验。结果表明,无取向硅钢的两相区大致在915~1000 ℃之间,相变始末点的温度随着冷却速度的增加而降低;枝晶处富集液相薄膜导致试验用钢出现第Ⅰ脆性温度区,为1250℃~Tm;未出现第Ⅱ、Ⅲ脆性温度区;600~1100 ℃区间内,Z值均达到75%以上。γ→α的转化是1050~900 ℃温度段的塑性以及抗拉强度随温度降低呈现先降低后升高的主要原因。  相似文献   

13.
采用Gleeble-3500热/力模拟试验机测定了新开发的纳米析出高强度钢在1 300~600℃的力学性能。结果表明:随拉伸温度降低,试验钢的抗拉强度逐渐升高,在1 000~750℃之间拉伸时,断面收缩率出现低谷,1 000℃时塑性仍很低,此温度区间即为该钢的第三脆性区,750℃时的断面收缩率最低,而在1 100~1 250℃之间钢的塑性良好。金相显微组织观察和扫描电镜观察发现,钢的第三脆性区拉伸试样断面呈现沿晶断口特征,以脆性断裂为主,表明纳米析出高强度钢的高温强度高,钢的塑性低谷的温度范围宽,易在连铸连轧生产过程中产生裂纹等缺陷,给实际生产工艺带来困难,需要注意制造工艺设计。  相似文献   

14.
采用热模拟拉伸试验研究了DP600双相钢的高温塑性。分析在700~1200℃下DP600钢热拉伸后的微观组织。结果表明:900~1200℃钢中奥氏体的动态再结晶能有效提高其高温塑性,断口为延性断裂。在900~1200℃以下组织显示奥氏体晶界处析出薄膜状先共析铁素体造成应力集中,导致在晶界处发生断裂,在800℃时塑性降低至谷底。在700~750℃由于块状铁素体大量析出,导致形变均匀塑性得到快速回升。断口附近金相组织中发现孔洞和裂纹,并且均沿着铁素体晶界存在。由于铁素体强度较低,当铁素体量较少时,应变集中在铁素体内部,微孔的形成以及晶界的分离首先从铁素体内部开始。  相似文献   

15.
利用Gleeble3500热模拟试验机对双相钢连铸坯的高温力学性能进行了研究,并通过Thermo-Calc热力学计算、差示扫描量热法(DSC)以及断口形貌与组织观察的方法,分析了其脆性区间产生的原因。研究表明,实验用钢的零强度温度(ZST)和零塑性温度(ZDT)分别为1450和1440℃,凝固前沿脆化温度区间较小,具有较好的抗高温裂纹特性。高温脆性区为1415~1440℃,其脆化的原因是晶界熔化,导致实验钢在应力作用下沿晶界开裂;低温脆性区为690~870℃,其脆化的原因是α-铁素体沿奥氏体晶界析出,导致实验钢在应力作用下沿晶界断裂。  相似文献   

16.
董方  郄俊懋  辛瑞峰 《热加工工艺》2014,(16):96-98,101
采用Gleeble-1500D热模拟机,测试了700~1400℃时304不锈钢的高温强度及塑性随温度的变化规律,确定了该钢种的零强度温度(ZST)与零塑性温度(ZDT)。结果表明:304不锈钢的ZST为1370℃,ZDT为1350℃左右;高温屈服强度及抗拉强度随温度的升高而降低,1250℃之后屈服强度及抗拉强度都降低至25MPa以下,强度变差;第一脆性区的温度为1250℃到熔点,第三脆性区的温度为950~1050℃,在1050~1200℃内断面收缩率均在65%以上,塑性较好。  相似文献   

17.
通过Gleeble-3500热模拟试验机研究了不同应变速率下V-N微合金化Q420B钢连铸坯的高温热塑性,利用扫描电镜观察高塑性区和第Ⅲ脆性温度区拉伸试样的断口形貌及断口处组织形貌,分析了试验钢在高温下的强度和塑性随温度变化的关系,动态再结晶、相变和析出物对高温热塑性的影响。结果表明:在应变速率为ε觶=5×10-3/s时,存在第Ⅲ脆性区(700~900℃),在1000℃时断面收缩率(RA)达到最大值92.16%;当应变速率为ε觶=5×10-2/s时,存在第Ⅲ脆性区(600~862℃),在1100℃时RA达到最大值90.39%;当应变速率为ε觶=5×10-1/s时,不存在塑性凹槽;3个应变速率下均没有出现第Ⅱ脆性区;在第Ⅲ脆性区,随着应变速率的增大,断面收缩率提高;在1000~1200℃出现高塑性的主要原因是发生了动态再结晶;第Ⅲ脆性区塑性低主要是由于晶界处有析出物和夹杂物,同时也是由于沿奥氏体晶界析出的铁素体抗拉强度低。  相似文献   

18.
利用Gleeble3500热模拟试验机对双相钢连铸坯的高温力学性能进行了研究,并通过Thermo-Calc热力学计算、差示扫描量热法(DSC)以及断口形貌与组织观察的方法,分析了其脆性区间产生的原因。研究表明,实验用钢的零强度温度(ZST)和零塑性温度(ZDT)分别为1450和1440℃,凝固前沿脆化温度区间较小,具有较好的抗高温裂纹特性。高温脆性区为1415~1440℃,其脆化的原因是晶界熔化,导致实验钢在应力作用下沿晶界开裂;低温脆性区为690~870℃,其脆化的原因是α-铁素体沿奥氏体晶界析出,导致实验钢在应力作用下沿晶界断裂。  相似文献   

19.
杨吉春  高福彬  任金亮 《热加工工艺》2014,(16):102-104,111
00Cr17Mn6Ni5N奥氏体不锈钢在10 kg真空感应炉内熔炼,并在氮气气氛下加氮化铬进行N合金化。通过Gleeble-1500D热模拟试验机进行高温拉伸试验。采用扫描电镜和蔡司金相显微镜,观察断口形貌及近断口处组织。研究表明,实验钢的高温塑性较好,最佳塑性区间为1050~1150℃,在1200℃附近存在高温脆性区;从1000~1250℃热模拟拉伸断口形貌分析,实验钢的断裂方式以韧性断裂为主,在1200℃脆性区的断裂为微孔或析出物为中心的韧窝断裂。  相似文献   

20.
利用Gleeble-1500热模拟试验机对GCr 15模具钢连铸坯进行高温拉伸试验,研究了不同温度条件下GCr15模具钢连铸坯的力学性能;分析了抗拉强度和断面收缩率随温度的变化情况;利用SEM观察试样的断口形貌.结果表明,GCr15模具钢良好的塑性区在800~1200℃,第一脆性区在1200~1350℃,第三脆性区在800℃以下,零塑性温度为1300℃,零强度温度在1400℃以上.防氧化剂能提高GCr 15的高温力学性能,经双细化处理并且涂有防氧化剂的GCr15钢,其伸长率达324.5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号