首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 500 毫秒
1.
传统木结构建筑木构件表面通常采用地仗处理进行保护,而地仗处理对木构件耐火性能的影响规律尚不清晰。为此,通过4组10根三面受火木梁耐火极限的对比试验,研究了截面尺寸、持荷水平、是否地仗处理等因素对木梁耐火极限的影响规律,提出了剩余截面法计算木梁耐火极限,并提出了木梁热力耦合数值分析模型。结果表明,三面受火木梁耐火极限随持荷水平的增加明显降低,当持荷比由30%增加至50%时,木梁耐火极限降低19.6%~31.7%,平均降低17.5min;三面受火木梁耐火极限随截面尺寸增加显著提高,当截面尺寸由100mm×200mm增加至200mm×400mm时,耐火极限提高95.1%~107.8%,平均增加40.0min;木梁表面经一麻五灰地仗处理后,耐火极限提高21.3%~429%,平均提高15.8min。不同持荷水平和截面尺寸木梁内部距离边缘相同位置处的温度变化相近,表面采用一麻五灰地仗处理可显著延缓木梁内部温度的上升速率,木梁两个方向的炭化速度平均值为0.54mm/min,与未作表面处理的木梁相比降低19.4%。基于剩余截面法和数值模拟得到的三面受火木梁耐火极限预测值与试验值的误差在±15%以内,基本满足工程精度要求。  相似文献   

2.
传统木结构建筑的防火性能是制约其长期安全使用的重要因素。通过6组18根不同表面处理圆木柱受火后力学性能的对比试验研究,分析不同表面处理不同受火时间后圆木柱剩余承载力、初始刚度和炭化速度的变化规律,了解不同表面处理对圆木柱受火后力学性能的影响规律。结果表明,未受火对比试件和受火时间较短的圆木柱均呈轴压破坏特征,受火时间较长圆木柱呈偏压破坏特征。受火后试件剩余承载力较未受火对比试件降低5.3%~80.2%,降低幅度与受火时间成正比、与截面尺寸成反比;传统地仗保护试件剩余承载力损失程度明显小于表面无处理试件和表面涂抹防火涂料试件。受火后圆木柱初始刚度显著降低,降低幅度随受火时间增加而增加,有传统地仗保护试件降低幅度小于表面无处理试件。传统地仗保护试件受火炭化后表面有一层白色覆盖物,其炭化速度小于表面无处理试件。数值模拟结果与试验结果符合较好,可供传统历史木结构受火后的评估鉴定。  相似文献   

3.
木梁四面受火炭化速度及剩余受弯承载力试验研究   总被引:1,自引:0,他引:1  
为研究我国常用树种木构件的抗火性能,进行了4组共12根木梁四面受火试验、以及受火后的剩余受弯承载力试验研究。结果表明,木梁有效面积因受火炭化而减小,边角棱角不再存在,呈圆弧状,靠近炭化层的高温分解层木材强度明显劣化;表面无防火措施木梁的平均水平炭化速度为0.827mm/min,平均竖向碳化速度为0.848mm/min;受火木梁受弯试验过程中跨中截面基本符合平截面假定,破坏模式基本同对比木梁;极限承载力、极限位移、刚度、弯曲弹性模量随着受火时间增加而减小;防火涂料能有效降低炭化速度,提高受火后剩余承载力、极限位移、刚度,防火效果显著。  相似文献   

4.
木梁三面受火后截面分为三个区:外侧为炭化层,承载力完全丧失;中间为高温分解层,承载力明显劣化;内部为正常层,承载力无影响。通过4组15根木梁三面受火后力学性能的对比试验研究,了解不同受火时间后木梁剩余承载力、破坏形态和炭化速度的变化。研究结果表明,三面受火后木梁初始刚度明显降低,剩余承载力显著减小。三面受火后木梁承载力下降原因主要包括:受火后木梁表面炭化使有效面积减小,中和轴上升;受火后靠近炭化层的高温分解层木材强度明显劣化。由于角部遭受两个方向的热传递,使木梁下角部炭化加速后变为弧形。随着受火时间增加,木梁炭化速度有所降低;且竖向炭化速度略大于水平炭化速度。  相似文献   

5.
通过2组7根胶合木梁三面受火后力学性能的对比试验,研究了不同表面处理和不同受火时间后胶合木梁的破坏形态、剩余承载力和应变的变化规律。研究表明,胶合木梁剩余承载力随受火时间增加而明显降低,受火20~40min后剩余承载力显著降低;表面有阻燃涂料处理试件剩余承载力略大于无阻燃涂料处理试件。未受火对比试件和受火后试件跨中截面应变分布均符合平截面假定;相同荷载作用下,受火后试件梁底和梁顶的应变均大于未受火对比试件。采用基于ABAQUS二次开发的木材本构模型,能准确预测木材内部温度在100℃左右时的平台段,且距离受火面越远平台段越长;水平和竖向炭化深度模拟值与试验值误差为8.6%~14.0%,能较准确地模拟胶合木梁的炭化深度;胶合木梁受火后剩余承载力模拟值与试验值吻合较好,可用于胶合木梁三面受火后剩余承载力的评估。  相似文献   

6.
通过4组18根胶合木梁三面受火耐火极限的对比试验,研究截面尺寸、持荷比、阻燃涂料、木梁跨中受拉区是否存在指接对耐火极限的影响。研究结果表明,随着持荷比增加,三面受火胶合木梁耐火极限明显降低,当持荷比由30%增加到50%时,耐火极限降低5~29min;随着截面尺寸增加,耐火极限略有增加,当截面尺寸由100×200增加到150×300时,耐火极限增加1~12min;胶合木梁表面采用I型阻燃涂料涂抹后耐火极限提高4~6min,采用Ⅱ型阻燃涂料常温常压浸渍后耐火极限提高4~13min;纯弯段受拉区存在指接时,耐火极限降低4~25min。多数试件竖向炭化速度大于水平炭化速度,有阻燃涂料木梁的炭化速度略小于没有阻燃涂料木梁的炭化速度。  相似文献   

7.
考虑目前常用的工程竹类型胶合竹和重组竹,通过2组10根工程竹柱四面受火后力学性能的对比试验,研究了不同受火时间后工程竹柱剩余承载力、破坏形态和炭化速度的变化。结果表明:不同受火时间后工程竹柱的剩余承载力明显降低,受火10~20min后降低幅度达29.0%~83.1%。四面受火后工程竹柱剩余承载力下降程度随受火时间增加而增加,随截面尺寸增加而减小。剩余承载力下降主要是由于四面受火后工程竹柱表面炭化引起的有效截面面积减少,以及四面受火后靠近炭化层的高温分解层强度明显劣化所致。各组对比试件的初始刚度均明显大于不同受火时间后试件。由于角部遭受两个方向的热传递,四面受火后工程竹柱角部炭化后变为弧形,等效成矩形截面后的等效炭化速度比非角部影响区的平均炭化速度大;胶合竹柱的炭化速度比重组竹柱的炭化速度略高。  相似文献   

8.
木柱受火后截面演化为三个区域:外侧为漆黑的炭化层,承载力完全丧失;中间为深灰的高温分解层,承载力明显劣化;内部为颜色不变的正常层,承载力无变化。通过5组24根木柱四面受火后力学性能的对比试验研究,了解不同受火时间后木柱剩余承载力、延性、破坏形态和炭化速度的变化过程。研究结果表明,受火后木柱剩余承载力显著降低,受火木柱的初始刚度均明显低于对比试件,部分截面较小的受火木柱发生偏压破坏。四面受火后木柱承载力下降原因主要包括:受火使木柱表面炭化,木柱有效面积减小;受火后靠近炭化层的高温分解层木材强度明显劣化;随着受火时间增加,木柱截面长细比增加导致其稳定系数降低;部分木柱由于局部裂缝使炭化不均,使受火后木柱的破坏形态由轴压转变为偏压破坏。受火木柱表面有裂缝处及角部的炭化速度加大;随着含水率降低,炭化速度有所增加;随着受火时间增加,炭化速度有所降低。  相似文献   

9.
一麻五灰是传统木结构中常见的地仗保护做法。通过4组10根采用一麻五灰传统保护处理圆木柱的耐火极限对比试验,研究不同持荷水平、不同直径、是否采用一麻五灰传统保护处理等对圆木柱耐火极限的影响。研究结果表明:对于直径为200mm的圆木柱,当无表面防火处理时,荷载比为30%和50%时耐火极限分别为39.7min和8.7min;当表面采用一麻五灰传统保护处理时,荷载比为30%和50%时耐火极限分别为56.0min和19.9min;对于直径为350mm的圆木柱,当无表面防火处理时,荷载比为30%和50%时耐火极限分别为94.2min和62.5min;当表面采用一麻五灰传统保护处理时,荷载比为30%和50%时耐火极限分别为123.7min和94.7min。可见圆木柱的耐火极限随着持荷水平增加而显著降低,随着直径增加而显著增大;采用一麻五灰传统保护处理后,圆木柱的耐火极限明显增大;一麻五灰传统保护处理能有效降低圆木柱内部的温升梯度,延缓圆木柱开始炭化的时间、降低炭化速度。  相似文献   

10.
通过4组14根胶合木短柱四面受火后力学性能的对比试验,研究不同截面尺寸、表面处理、受火时间后胶合木柱的剩余承载力、破坏形态和炭化速度的变化规律。研究表明,四面受火20~60min后,胶合木柱剩余承载力随受火时间增加而显著降低,下降幅度为21%~73%,且下降幅度随截面尺寸的增加而减小,截面尺寸为200×200时,下降幅度为28%~73%,截面尺寸为300×300时,下降幅度为21%~51%。胶合木柱炭化速度随受火时间增加有所降低。提出的基于实测炭化速度剩余承载力改进计算方法的计算结果与试验结果吻合较好,可用于预测四面受火胶合木柱的剩余承载力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号