共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
采用金相显微镜、电子显微镜、化学相分析等手段研究了CSP热轧工艺对Ti微合金化高强钢组织和性能的影响。结果表明:880℃终轧、620℃卷取试验钢的屈服和抗拉强度分别为825、895 MPa,钢中存在大量的纳米尺寸TiC粒子,其沉淀强化效果超过150 MPa;卷取温度降低到580℃,TiC的析出受到抑制,沉淀强化效果明显减弱。卷取温度显著影响钢中第二相粒子的析出过程,终轧温度和卷取温度改变对晶粒尺寸也有影响,两者综合作用的结果使Ti微合金化钢的强度和韧性发生变化。 相似文献
3.
研究了700 MPa 级Ti 微合金化高强钢(/%:0.05~0.07C,0.05~0.10Si,1.10~1.25Mn,0.075~0.095Ti)230 mm ×(1580~1780)mm连铸板坯粗轧工艺中定宽量100~300 mm和2~6道次分配量对最终10 mm板组织的影响.结果表明,定宽量的增加会增加组织的不... 相似文献
4.
对低碳V-N-Cr微合金化钢进行了控轧控冷实验,终冷后采用了随炉冷、保温毡缓冷、空冷3种冷却制度,并对3种不同冷却制度钢板进行了显微组织、综合力学性能和断口形貌的分析。研究表明,空冷钢板显微组织为细小多边形铁素体及针状铁素体复相组织,铁素体晶粒尺寸5~8μm,针状铁素体由交织的板条组成,宽度1~3μm。在随炉冷及保温毡缓冷时,由于冷却速率缓慢,多边形铁素体及针状铁素体发生了回火,并析出细小弥散的碳化物。3种冷却条件下,屈服强度均≥585 MPa,抗拉强度≥694 MPa,延伸率≥27%,而且1/2试样-60℃冲击功≥36 J,综合力学性能优于Q550F级国标要求。细晶强化、析出强化、组织强化为本钢种的主要强化方式,冲击断口均由韧窝组成,呈现韧性断裂模式,控轧控冷引起的晶粒细化及针状铁素体的形成有效阻碍解理裂纹的扩展,从而增强低温韧性。 相似文献
5.
采用光学显微镜、扫描电镜和透射电镜观察700MPa级钒微合金化低合金高强钢热轧后在3~5,1.5~2和0.3~0.5℃/s三个不同冷却速度下获得的微观组织,对晶粒度、珠光体体积分数、珠光体片层间距进行了定量分析,测定了拉伸性能并观察了拉伸断口。结果显示,冷却速度为1.5~2℃/s时产品性能最佳。这是因为该冷却速度下铁素体基体上纳米碳化物数量增加且弥散细小,析出强化效果随析出物数量呈线性增加。 相似文献
6.
在实验室对比模拟研究了Nb-Ti微合金化低合金高强钢的罩式退火和连续退火工艺。利用扫描电镜、透射电镜和拉伸试验机等设备,分析了不同退火工艺条件下试验钢的组织演变规律及性能变化趋势。结果表明,2种退火方式下试验钢组织中均存在纳米级Nb-Ti复合析出物,罩式退火工艺下试验钢的主要组织为铁素体+球状渗碳体,在640℃退火获得了较好的力学性能,抗拉强度为539 MPa、屈服强度为498 MPa、伸长率达到23.1%;连续退火工艺下试验钢组织为铁素体+珠光体+M-A岛,组织更加细小,细晶强化效果更好,在820℃退火时产生的链状组织提升了试验钢的力学性能,此时抗拉强度为644 MPa、屈服强度为536 MPa、伸长率达到22.7%,也可通过选取更高的退火温度实现对强度和伸长率的调节。 相似文献
7.
固定化学成分和其他工艺参数,研究了紧凑式带钢生产卷取温度变化(625和579℃对Ti微合金化高强钢组织和力学性能的影响。热轧带钢的力学性能测试表明,卷取温度降低后,屈服强度降低205 MPa,而-20℃冲击功由11.7J增加到47 J。采用光学金相、电子显微术等手段分析了钢中组织和析出物,625℃卷取带钢为铁素体组织,579℃卷取带钢组织更为细小,贝氏体特征明显;而卷取温度降低后纳米尺寸碳化物的数量显著减少,由此降低了沉淀强化效果,造成强度大幅下降,并与组织细化一起改善材料的韧性。卷取温度是Ti微合金化高强钢生产中重要的工艺参数,需要严格控制。 相似文献
8.
通过采用扫描电镜、透射电镜、X射线衍射以及相分析等手段来观察组织的微观结构和对析出相的验证,研究轧制温度对轧态Ti微合金化马氏体钢强度的影响。研究结果表明,通过降低轧制温度可以明显提高含Ti马氏体钢的屈服强度,这主要是因为当轧制温度从1100℃降低到950℃过程中,形变诱导析出大量的TiC析出相,随着轧制温度的降低,析出相数量明显增加,并且平均尺寸也逐渐变小。马氏体中大量存在的1~20nm范围的析出相可以起到明显的析出强化作用。 相似文献
9.
HRB400钢(/%:0.21~0.25C,0.35~0.60Si,1.30~1. 55Mn,≤0.045P,≤0.045S)Φ14 mm钢材的生产工艺为100 t BOF-吹氩-150 mm×150 mm坯连铸-轧制。为解决因提高HRB400钢屈服强度并减少因C、Mn元素过高导致的钢材冷弯开裂现象,采用添加氮化钛合金进行Ti微合金化和优化控轧控冷的工艺试验。结果表明,当钢中Mn和Si含量(/%)分别降低0. 35和0. 10,添加0.007%Ti(试验2)或控制钢筋上冷床温度670~690℃,成品钢筋强度均能达到460 MPa的试验目标值;而在采用Ti微合金化和优化的冷却工艺(上冷床钢筋温度670~710℃,/%:0.22C, 0.34Si, 1.00Mn, 0.007Ti,试验3)试验钢的平均屈服强度Rel达到485 MPa,原工艺(上冷床温度690~730℃, /%:0. 22C,0. 43Si,1. 37Mn)的平均屈服强度Rel,仅为435 MPa。 相似文献
10.
11.
12.
研究了Ti微合金化对Mn18钢组织和力学性能的影响,并分析了Mn18钢锤头失效的原因。结果表明,Ti微合金化在Mn18钢中具有细化晶粒、提高冲击韧性、伸长率、强度和硬度等作用,在Mn18钢加入0.10%和0.30%的w[Ti]时,随着Ti含量增加,高锰钢的硬度增大、强度提高,冲击韧性和延伸性也均呈优化趋势,继续增加w[Ti]至0.51%时,除布氏硬度继续增大外,KU2数值及稳定性、强度稳定性、伸长率等指标均出现下降趋势,高锰钢属于高氮奥氏体钢,加入Ti后迅速析出大量TiN,作为异质核心,起到系列有益作用,加入量过大,则TiN类夹杂物的尺寸过大,且出现局部聚集,将对Mn18钢的性能稳定性造成不利影响,也易于导致Mn18锤头断裂失效。在Mn18钢中使用Ti微合金化,为保证其有益效果,其含量不应超过0.30%。 相似文献
13.
14.
采用光学金相、电子显微术和化学相分析的方法并结合热力学计算,分析了紧凑式带钢生产(CSP)的Ti微合金化高强钢中的析出物及其析出规律.研究发现:高强钢中存在微米尺寸的立方TiN析出和大量纳米尺寸的析出物粒子;钢中MX相(M=Ti,Mo,Cr;X=C,N)的质量分数为0.0927%,其中10 nm以下的析出物占26.9%;均热之前和均热过程TiN已基本全部析出,连轧前TiC不具备析出的热力学条件;降低钢中N和S含量、严格控制卷取温度可增加TiC的体积分数,降低γ→α相变温度可以阻止细小碳化物长大.结果表明,析出物总的沉淀强化效果约为156 MPa,并能通过化学成分和工艺的控制进一步增强. 相似文献
15.
利用金相显微镜、SEM、TEM方法研究了轧后冷却制度对铌钛微合金化低碳贝氏体钢微观组织结构、第二相析出及力学性能的影响.结果表明:轧后空冷(弛豫)至一定温度后加速冷却获得铁素体/贝氏体双相组织;随轧后空冷终止温度降低,铁素体含量增加,晶粒尺寸越大,第二相析出尺寸也有长大趋势,贝氏体形态发生改变,贝氏体板条边界和取向越不明显,位错密度降低,M/A形态也发生一定变化;力学性能表现为强度降低,屈强比和韧塑性得到改善.当轧后空冷终止温度在725~740℃,然后以15℃/s的冷却速度冷却至440℃,可以获得良好的综合力学性能,性能满足标准GB/T 1591中Q690要求. 相似文献
16.
17.
18.
19.