首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
针对高拉速下薄板坯连铸结晶器内的液面卷渣问题,建立了1∶1水力学模型,采用水/真空泵油模拟钢/保护渣介质,研究了连铸拉速、水口插入深度、保护渣黏度对漏斗形结晶器内液渣层变化及卷渣行为的影响。结果表明,随着拉速提高,结晶器内液面波高升高,液面高度自窄边向水口方向逐渐降低,液渣层厚度相应由薄变厚,导致结晶器窄边附近钢液裸露;结晶器内窄边至水口之间1/2处波高变化较大、液面流速最大、易发生剪切卷渣。在试验条件下,采用增加水口插入深度、降低最高拉速、适当提高保护渣黏度等方法,使液面速度小于0.486 m/s的临界流速、液面波动指数F数小于5.45,可防止结晶器内产生剪切卷渣。然而,这些手段不能避免结晶器内水口附近的旋涡卷渣,这是因为薄板坯连铸钢通量大以及漏斗形结晶器和鸭嘴形水口容易形成负压旋涡造成的。  相似文献   

2.
通过统计和分析现场数据,得出限制MCCR薄板坯连铸连轧低碳钢拉速提高的主要因素为结晶器热像图中的冷齿和结晶器液面波动,对冷齿和液面波动的成因进行研究,并提出有效控制措施。研究结果表明,结晶器热像图中的冷齿与结晶器弯月面凝固收缩特性相关,受冷却铜板厚度、碳当量、拉速及保护渣影响,反映到铸坯实物上为凹陷或者裂纹缺陷,需合理匹配形成最优参数组合,以降低因冷齿造成的漏钢风险。当结晶器铜板厚度减薄量在6.7%以内时,一冷水维持原设计流量;当结晶器铜板厚度减薄量在6.8%~11.1%时,拉速4.0 m/min以上时需降低10%的一冷水流量;当结晶器铜板厚度减薄量在11.2%~15.6%时,所有拉速下需降低18%的一冷水流量,同时使用高碱度B型保护渣。针对高拉速下结晶器液面波动问题,通过数值模拟研究浸入式水口插入深度、拉速、结晶器断面宽度及电磁制动等参数对结晶器内流场和温度场的影响规律,得到不同拉速和不同断面条件下电磁制动电流的合理配置,使得拉速达到5.5 m/min时钢液面最大流速仍小于0.3 m/s。上述研究结果应用后,结晶器冷齿问题得到有效缓解,110 mm厚的薄板坯最高拉速达到5.8 m/min,结晶器液面波动控制在±1 mm以内,保护渣液渣层厚度保持在8~10 mm,结晶器热流稳定,实现了高拉速的顺稳生产。  相似文献   

3.
针对国内某钢厂1 450 mm×230 mm板坯连铸结晶器生产情况,利用相似原理,建立相似比为0.6的物理模型。采用墨水进行流场显示试验,观察钢液从水口进入结晶器的扩散过程,通过数据采集系统对结晶器液面波动情况进行检测,对所采集液面波动数据采用1/10大波波高进行分析,研究不同断面及拉速对结晶器液面波动的影响,并对不同断面结晶器下所对应的拉速做出优化。结果表明,结晶器两侧的流场轨迹基本对称分布;结晶器宽度和拉速的增加均会导致结晶器液面波动幅度增大,随着结晶器宽度的增加,窄面附近的液面波动波幅增加最小,结晶器水口附近液面波动波幅增加最大;当结晶器拉速增大时,液面波动的剧烈程度基本符合窄面附近处最大、SEN附近处次之、1/4宽面处最小的规律,但在结晶器宽度1 150 mm、拉速1.6 m/min条件下,水口处波动大于窄面附近。在结晶器宽度为1 150 mm、拉速为1.6 m/min,结晶器宽度为1 450 mm、拉速为1.4 m/min和结晶器宽度1 750 mm、拉速为1.2 m/min工况下结晶器液面波动比较合理。  相似文献   

4.
以承德钢铁厂板坯连铸结晶器为原型,采用1∶1的水模型进行试验,研究了拉速、浸入式水口出口角度、水口浸入深度、水口底面结构及结晶器断面宽度等工艺参数对板坯结晶器内表面流速的影响。结果表明:拉速对表面流速的影响最大,随着拉速的提高,结晶器内钢液表面流速明显增大,当断面宽度为1 650 mm,拉速由0.7 m/min提高到1.4 m/min,表面流速由0.04 m/s提高到0.1 m/s;波浪面结构的浸入式水口表面流速效果最优。  相似文献   

5.
首钢京唐MCCR产线是国内第一条多模式连铸连轧产线,薄板坯高拉速连铸是实现无头轧制模式的基础,结晶器内流场控制是决定薄板坯高拉速连铸的关键.采用VOF两相流模型研究薄板坯连铸结晶器内流场特点,采用插钉法测量实际生产过程结晶器弯月面流速,并与对应工况条件下模拟结果进行对比校验了模型准确性.通过薄板坯连铸结晶器内流场的数值...  相似文献   

6.
李阳 《河北冶金》2023,(3):6-11
针对SPHC-S铸坯生产存在夹渣缺陷的现状,对不同工况条件下的结晶器流场进行了测定,并根据测试结果进行了工业试验验证。结果表明,水口倾角相同的情况下,当插入深度为140 mm时,随着拉速由1.7 m/min增大至2.0 m/min,结晶器表面流速由0.201 m/s增大至0.279 m/s;当插入深度为160 mm时,相同涨速范围内,结晶器表面钢液流速由0.167 m/s增大至0.234 m/s。当水口插入深度相同,倾角为15°时,拉速由1.7 m/min增至2.0 m/min,结晶器表面流速由0.179 m/s增大至0.258 m/s;当浸入式水口倾角为30°时,结晶器表面钢液流速随着拉速的变化由0.167 m/s提高至0.234 m/s。经过表检系统验证试验热轧卷板夹渣情况,发现结晶器表面钢液流速为0.22~0.24 m/s时,卷板夹渣指数最小。此流速对应的最优工况为浸入式水口倾角30°,水口插入深度为160 mm,拉速为2.0 m/min,且按照此工艺参数进行工业生产验证后,卷渣缺陷相比之前减少51%。  相似文献   

7.
板坯连铸结晶器保护渣卷渣及其影响因素的研究   总被引:1,自引:0,他引:1  
对板坯连铸结晶器保护渣卷渣进行的水力学模拟研究结果表明,主要有三种类型的卷渣,即窄边附近的剪切卷渣、浸入式水口附近的旋涡卷渣和水口吹入的氩气泡上浮冲击钢渣界面引起的卷渣.拉速增加、减少浸入式水口浸入深度、减小水口出口倾角和增加吹入的Ar流量均会加大表面流速和液面波动,增大结晶器内卷渣的倾向,而其中拉速增加对卷渣的影响最大.当结晶器宽度为1 900 mm、采用1.4 m/min的拉速时,选择向下25°的水口出口角度、250 mm的水口浸入深度和10 L/min的Ar流量可将板坯结晶器内流场的表面流速和液面波动控制在合理的范围内,从而减小和避免结晶器内卷渣.  相似文献   

8.
 采用1∶1的水模型研究了5种不同底孔直径(16~28mm)的三孔水口下漏斗型薄板坯结晶器内的流场、液面特征和卷渣行为。结果表明:在常规工艺参数下,5种三孔水口下结晶器内钢液的流场都是典型的“双辊流”,且流场稳定;在5种三孔水口下结晶器液面波动都较平稳,且波动范围都在±(3~5)mm之间。5种不同水口下结晶器液面主要发生剪切卷渣,漩涡卷渣很少发生。试验得知:在水口浸入深度280mm,拉速为5m/min时,剪切卷渣发生的钢液临界表面速度是0.32m/s,与文献报道的模型计算值较吻合。在水口浸入深度280mm、拉速为5m/min的条件下,适合薄板坯连铸的最佳的三孔水口的底孔直径为22mm。  相似文献   

9.
任磊  张立峰  王强强  赵星 《工程科学学报》2016,38(10):1393-1403
利用粒子图像测速技术,以200 mm×2040 mm板坯连铸结晶器为原型,建立1∶4水模型进行实验,对结晶器内钢液流动形态、流速及各流态所占比例、液面波动、以水口为中心结晶器两侧对称点速度随时间的变化、水口两侧液面水平流速、水口两侧对称位置液面至结晶器底部垂直方向速度和钢液对两侧窄面的冲击深度进行系统地研究和分析,并对比拉速的影响.研究表明,粒子图像测速技术不仅可以测量结晶器内流场流速,还可以对流场对称性进行全方位、多角度定量分析,为研究连铸参数变化,比如拉速、水口结构和水口浸入深度,对板坯连铸结晶器内钢液流动及对称性的影响提供一种较为精确的方法和思路.通过分析得出,在本实验条件下拉速0.5 m·min-1优于0.6 m·min-1.   相似文献   

10.
采用1:1水力学模型对厚度60 mm薄板坯连铸水口浸入深度220~310 mm、出口角度-30°~-60°、拉速4.2~6.0 m/min条件下CSP结晶器内钢液流动行为进行模拟研究。在拉速4.2~5.0 m/min时双侧孔水口下CSP结晶器流场股流冲击深度达850~1010 mm;流场内存在三个滞区,液面波动不稳定;水口角度对结晶器窄面和水口附近波动影响很显著,拉速对结晶器和窄面中心处波动影响较大,浸入深度对水口附近波动影响较大。  相似文献   

11.
伍旋  王明林  张延玲  张慧  张开发 《炼钢》2020,36(1):27-33,49
采用1∶1物理模拟和数值模拟相互验证,分析了拉速、水口插入深度和断面宽度对结晶器流场的影响。结果表明,当断面为230 mm×1 490 mm,插入深度为150 mm时,拉速从1.3 m/min增加到1.7 m/min,最大表面流速从0.21 m/s增加到0.32 m/s,液面波动平均增幅为21.1%;当断面为230 mm×1 490 mm,拉速为1.7 m/min时,水口插入深度从190 mm降低到150 mm,最大表面流速从0.26 m/s增加到0.32 m/s,液面波动平均增幅为30.6%;结晶器断面宽度从940 mm增加到1 490 mm,由于通钢量增大,液面流速和液面波动都增大;各因素改变时,角部流速的增幅远小于其他部位流速增幅,角部在流场中属于死区;通过物理模拟研究可得,影响液面流速最大的因素是拉速,影响液面波动最大的因素是断面宽度。  相似文献   

12.
 为了解决82B钢连铸坯表面出现渣沟的问题,以提高钢渣界面温度、改善保护渣的熔化与润滑效果为出发点,对连铸现场180 mm×180 mm小方坯结晶器建立三维数学模型,对比施加电磁搅拌工艺不同直通型浸入式水口下结晶器内流场和温度场分布。计算结果表明,当水口内/外径由40/100 mm变为30/70 mm后,水口两侧流速大于0.15 m/s的流场区域扩大,水平截面环流最大流速由0.44 m/s降低至0.42 m/s,这表明流股对四周壁面的冲刷作用减弱;钢液面最大流速由0.12 m/s增大至0.15 m/s,高温区域范围扩大。综合效果显示,水口内外径减小对结晶器内的流场影响较小,钢渣界面附近钢液温度提高。现场试验统计表明,水口内外径减小后,保护渣消耗量由吨钢0.189 kg提高到0.228 kg,钢液面处保护渣的熔化良好,润滑效果得到了改善。配合保护渣优化等措施,铸坯表面渣沟发生率明显下降,由改进前的40%~50%降低到改进后的1%以内。  相似文献   

13.
为研究连铸工艺参数对结晶器内部钢液的作用规律,对涟钢1 850 mm×230 mm板坯连铸结晶器流场和温度场进行了系统的数值模拟,研究了不同吹氩量(0~7 L/min)、不同水口浸入深度(110~150 mm)和不同拉速(0.9~1.2 m/min)对结晶器内钢液行为的综合影响。结果表明,随着吹氩量增加,自由液面的钢液流速和温度总体呈现降低的趋势;随着水口浸入深度增加,自由液面的钢液流速先降低后增加;随着拉速增加,自由液面的钢液流速增加;水口浸入深度和拉速对温度场的影响较小。当吹氩量为5 L/min、水口浸入深度为130 mm、拉速为0.9 m/min时,结晶器自由液面具有较小的钢液流速和湍动能,同时液面具有较好的温度均匀性。通过数值模拟研究,为合理选择结晶器相关工艺参数提供了理论依据。  相似文献   

14.
针对某钢厂1 270 mm×150 mm板坯结晶器生产中存在的液面波动问题,改进了浸入式水口结构,并分析改进后的浸入式水口对结晶器流场的影响。研究结果表明,改进水口后结晶器内部流场分布更加合理,表面流速降低,最大表面流速由0.414 m/s减小到0.365 m/s,降低了11.8%。速度场分布的粒子图像测速(PIV)结果与数值计算结果基本吻合,验证了数值计算结果的精确性。最后分别采用原型水口和改进后耗散型水口进行了结晶器油层波动水模拟试验,结果表明采用改进的耗散型水口后,不同拉速下的最薄油层厚度均远远大于原型水口,能够保证油层覆盖液面不裸露。当拉速增加至2.0 m/min时,采用原型水口最薄油层厚度仅为0.005 m,而采用耗散型水口时最薄油层厚度仍有0.015 m。采用新型耗散型水口能够有效降低结晶器自由液面波动,防止钢液二次氧化的发生。研究结果可为优化结晶器水口结构提供参考。  相似文献   

15.
水口吹氩工艺板坯结晶器内气泡运动行为的物理模拟   总被引:3,自引:0,他引:3  
以1300 mm × 230 mm板坯连铸结晶器的相似比0.4的物理模型,研究了拉速1.1 m/min、水口插入深度160 mm、水口吹气量0~15 L/min时连铸结晶器内气泡的运动行为,及其对钢液流股冲击深度、液面波动和液面裸露的影响。实验结果表明,随水口吹气量增加,结晶器内气泡的数量和尺寸都有所增加,气泡在钢液内水平方向扩散范围增大,且气泡最大穿透深度亦增加;当水口吹气量增大到5 L/min时,气泡逸出后在液面由全部向水口方向运动变为以集中逸出位置为中心的四散运动。  相似文献   

16.
以150mm×1600~3250mm宽板坯连铸结晶器为研究对象,利用大型商业软件ANSYS CFX10.0建立了1个三维有限体积模型,对结晶器内钢液的流动进行数值模拟.研究了拉速、浸入深度、水口倾角、断面宽度等工艺参数对结晶器内流场和窄面冲击压力的影响.结果表明:随着拉速的增大,表面流速和钢液对窄面的冲击压力都显著增加,采用较大的水口倾角和浸入深度,可以抑制液面波动,减少卷渣.  相似文献   

17.
为研究断面尺寸为1 490 mm×230 mm的吹氩板坯倒角结晶器内不同拉速对连铸生产过程中气液流动状态的影响,采用Euler-Lagrange方法建立了氩气-钢液两相流动双向耦合数学模型,并根据相似原理建立了吹氩板坯倒角结晶器1∶1水模型,通过对比物理模拟与数值模拟气泡分布结果验证了模型的准确性。随着拉速由0.6 m/min增大至1.8 m/min,上涡心高度下移89 mm,下涡心高度下移528 mm,氩气泡上浮对流股的抬升作用明显减弱,流场形态逐渐趋近于未吹氩时的板坯典型双环流形态;拉速增大使气泡分布范围扩大,气泡运动轨迹与水平方向的夹角增大;拉速增大能够有效减弱氩气泡在水口附近集中上浮引起的水口周围液位高度升高,同时上环流动能增强使得窄面与倒角面附近液位升高,液位最大高度差相较低拉速时明显下降;拉速增大使倒角面附近的液面流速显著提高,倒角面附近最高流速由拉速0.6 m/min时的0.007 m/s提高至拉速1.8 m/min时的0.057 m/s。  相似文献   

18.
为深入揭示不同水口类型对结晶器内钢液初始流动的影响,以某厂410 mm×530 mm的大方坯结晶器为原型,基于相似原理,采用1:1的物理模型,比较了直通型、五孔和四孔水口浇注时在不同拉速和浸入深度下的结晶器内液面波动和渣层状态。结果表明,3种水口的液面平均波高范围分别为0.20~0.30、0.23~1.10、0.35~1.28 mm。五孔水口和四孔水口的液面波动均比直通水口剧烈,渣层比直通水口活跃,尽管有轻微卷渣但无裸钢现象,这有利于保护渣的熔化和夹杂物的上浮去除。五孔水口和四孔水口对结晶器壁面的冲击比直通水口强,有助于铸坯中心等轴晶率的提高。推荐该大方坯使用多孔水口时浸入深度和拉速分别为170 mm和0.38 m/min,可保证生产顺行和铸坯质量改善。  相似文献   

19.
利用FLUENT对1400mm×230mm的板坯结晶器建立了描述结晶器内钢液流动的三维数学模型,以液体表面流速和射流冲击深度为主要参考指标,研究了拉速和水口插入深度对结晶器内流场的影响。结果表明:随拉速的增加,表面最大流速增大,射流冲击深度增加。当拉速超过1.2m/min时,表面最大流速增加明显;随着浸入式水口浸入深度的增加,表面最大流速减小,射流冲击深度减小,当浸入深度超过140mm时,表面流速减小明显。故满足断面要求的合理工艺参数:拉坯速度不大于1.2 m/min,且插入深度不小于140mm。  相似文献   

20.
针对150 t钢包、28 t中间包、60 mm薄板坯连铸的生产条件,采用正交设计的1:2水模型实验,通过测量结晶器液面波高和注流冲击深度,研究了十字出口形浸入式水口出口面积比(2.0~2.4)、出口倾角(15°~35°)、浸入深度(210~270 mm)和拉速(4.0~5.0 m/min)对结晶器流场的影响。结果表明,十字出口形浸人式水口最佳结构为出口面积比2.4,出口倾角25°,在浸入深度240 mm时,可以满足高拉速生产要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号