首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Two-phase frictional pressure drop characteristics of R410A/oil mixture flow boiling in horizontal small smooth tubes with outside diameters of 5.0 mm and 3.0 mm were investigated experimentally. Experimental conditions cover nominal oil concentrations from 0% to 5%. The test results show that the frictional pressure drop of R410A initially increases with the increase of vapor quality and then decreases, presenting a local maximum in the vapor quality range between 0.6 and 0.8; the presence of oil increases two-phase frictional pressure drop about 0–120% and 0–90% in present test conditions for 5.0 mm O.D. smooth tube and 3.0 mm O.D. smooth tube, respectively, and the increase is evident at high vapor qualities. The vapor-phase multiplier of R410A/oil mixture based on the mixture properties decreases with the decrease of tube diameter. A new vapor-phase multiplier correlation to predict the local frictional pressure drop of R410A/oil mixture flow boiling inside smooth tubes is developed based on local properties of refrigerant–oil mixture, and the deviations of the new correlation are within ±25% from the experimental data.  相似文献   

2.
The boiling heat transfer of refrigerant R-134a flow in horizontal small-diameter tubes with inner diameter of 0.51, 1.12, and 3.1 mm was experimentally investigated. Local heat transfer coefficient and pressure drop were measured for a heat flux ranging from 5 to 39 kW/m2, mass flux from 150 to 450 kg/m2 s, evaporating temperature from 278.15 to 288.15 K, and inlet vapor quality from 0 to 0.2. Flow patterns were observed by using a high-speed video camera through a sight glass at the entrance of an evaporator. Results showed that with decreasing tube diameter, the local heat transfer coefficient starts decreasing at lower vapor quality. Although the effect of mass flux on the local heat transfer coefficient decreased with decreasing tube diameter, the effect of heat flux was strong in all three tubes. The measured pressure drop for the 3.1-mm-ID tube agreed well with that predicted by the Lockhart–Martinelli correlation, but when the inner tube diameter was 0.51 mm, the measured pressure drop agreed well with that predicted by the homogenous pressure drop model. With decreasing tube diameter, the flow inside a tube approached homogeneous flow. The contribution of forced convective evaporation to the boiling heat transfer decreases with decreasing the inner tube diameter.  相似文献   

3.
Experimental investigations of evaporation heat transfer of R22 and R410A inside a horizontal micro-fin copper tube have been conducted and are reported here. Six micro-fin tubes with inner diameter of 7.14 mm and three micro-fin tubes with inner diameter of 8.8 mm but with different geometric parameters, such as the apex angle, the helical angle, fin height, fin pitch, and starts were tested. The evaporation experiments were taken at a constant temperature of 6°C. Moreover, working conditions of the experiments varied with the mass flux ranging from 100 kg/(m2.s) to 400 kg/(m2.s). For the evaporation experiments of Tube 1 – Tube 6 with R22, the inlet and outlet vapor quality is set as 0.1 and 0.9, respectively. For the evaporation experiments of Tube 7 – Tube 9 with R410A, the inlet and outlet vapor quality is set as 0.2 and 0.9, respectively. The heat transfer coefficients and the changing trend of the heat transfer coefficients vary among these tubes. The influence of each geometric parameter on the heat transfer performance of the micro-fin tube has been analyzed and is reported. Besides, correlations of evaporation heat transfer inside 8.8 mm or less horizontal round micro-fin tubes were developed.  相似文献   

4.
In this paper, flow patterns and their transitions for refrigerant R134a boiling in a microfinned helically coiled tube are experimentally observed and analyzed. All the flow patterns occurred in the test can be divided into three dominant regimes, i.e., stratified-wavy flow, intermittent flow and annular flow. Experimental data are plotted in two kinds of flow maps, i.e., Taitel and Dukler flow map and mass flux versus vapor quality flow map. The transitions between various flow regimes and the differences from that in smooth straight tube have also been discussed. Martinelli parameter can be used to indicate the transition from intermittent flow to annular flow. The transition from stratified-wavy flow to annular or intermittent flow is identified in the vapor quality versus mass flux flow map. The flow regime is always in stratified-wavy flow for a mass flux less than 100 kg/m2 s.The two-phase frictional pressure drop characteristics in the test tube are also experimentally studied. The two-phase frictional multiplier data can be well correlated by Lockhart–Martinelli parameter. Considering the corresponding flow regimes, i.e., stratified and annular flow, two frictional pressure drop correlations are proposed, and show a good agreement with the respective experimental data.  相似文献   

5.
Saturated flow boiling heat transfer and the associated frictional pressure drop of the ozone friendly refrigerant R-410A (a mixture of 50 wt% R-32 and 50 wt% R-125) flowing in a vertical plate heat exchanger (PHE) are investigated experimentally in the study. In the experiment two vertical counter flow channels are formed in the exchanger by three plates of commercial geometry with a corrugated sinusoidal shape of a chevron angle of 60°. Upflow boiling of saturated refrigerant R-410A in one channel receives heat from the downflow of hot water in the other channel. The experimental parameters in this study include the refrigerant R-410A mass flux ranging from 50 to 125 kg/m2 s and imposed heat flux from 5 to 35 kW/m2 for the system pressure fixed at 1.08, 1.25 and 1.44 MPa, which respectively correspond to the saturated temperatures of 10, 15 and 20 °C. The measured data showed that both the boiling heat transfer coefficient and frictional pressure drop increase almost linearly with the imposed heat flux. Furthermore, the refrigerant mass flux exhibits significant effect on the saturated flow boiling heat transfer coefficient only at higher imposed heat flux. For a rise of the refrigerant pressure from 1.08 to 1.44 MPa, the frictional pressure drops are found to be lower to a noticeable degree. However, the refrigerant pressure has very slight influences on the saturated flow boiling heat transfer coefficient. Finally, empirical correlations are proposed to correlate the present data for the saturated boiling heat transfer coefficients and friction factor in terms of the Boiling number and equivalent Reynolds number.  相似文献   

6.
ABSTRACT

This paper presents an experimental study on R1234yf flow boiling inside a mini microfin tube with an inner diameter at the fin tip of 2.4 mm. R1234yf is a new refrigerant with an extremely low global warming potential (GWP <1), proposed as a possible substitute for the common R134a, whose GWP is about 1300. The mass flux was varied between 375 and 940 kg m?2 s?1, heat flux from 10 to 50 kW m?2, and vapor quality from 0.1 to 1. The saturation temperature at the inlet of the test section was kept constant and equal to 30°C. The wide range of operative test conditions permitted highlighting the effects of mass flux, heat flux, and vapor quality on the thermal and hydraulic behavior during the flow boiling mechanism inside such a mini microfin tube. The results show that at low heat flux the phase-change process is mainly controlled by two-phase forced convection, and at high heat flux by nucleate boiling. The two-phase frictional pressure drop increases with increasing both mass velocity and vapor quality. Dry-out was observed only at the highest heat flux, at vapor qualities of around 0.94–0.95.  相似文献   

7.
Heat transfer and pressure drop characteristics of four microfin tubes were experimentally investigated for condensation of refrigerants R134a, R22, and R410A in four different test sections. The microfin tubes examined during this study consisted of 8.92, 6.46, 5.1, and 4 mm maximum inside diameter. The effect of mass flux, vapor quality, and refrigerants on condensation was investigated in terms of the heat transfer enhancement factor and the pressure drop penalty factor. The pressure drop penalty factor and the heat transfer enhancement factor showed a similar tendency for each tube at given vapor quality and mass flux. Based on the experimental data and the heat-momentum analogy, correlations for the condensation heat transfer coefficients in an annular flow regime and the frictional pressure drops are proposed.  相似文献   

8.
The two-phase pressure drop characteristics of the pure refrigerants R410a, R502, and R507a during condensation inside a horizontal tube-in-tube heat exchanger were investigated to determine the two-phase friction factor, the frictional pressure drop, and the total pressure drop. The two-phase friction factor and frictional pressure drop are predicted by means of an equivalent Reynolds number model. Eckels and Pate's experimental data, presented in Choi et al.'s study provided by NIST, were used in the analysis. In their experimental setup, the horizontal test section was a 3.81 m long countercurrent flow double tube heat exchanger with refrigerant flowing in the inner smooth copper tube (8.01 mm i.d.) and cooling water flowing in the annulus (13.7 mm i.d.). Their test runs were performed at saturated condensing temperatures from 38.33 °C to 51.78 °C while the mass fluxes were between 119 and 617 kg m−2 s−1 for the horizontal test section. The separated flow model was modified by ten different void fraction models and correlations, as well as six different correlations of friction factors, in order to determine the best combination for the validation of the experimental pressure drop values. Carey's friction factor was found to be the most predictive. The refrigerant side total and frictional pressure drops were determined within ± 30% using the above friction factor and the void fraction combinations of Carey, Baroczy, and Armand for R410a; and those of Carey, Spedding and Spence, and Rigot for R502 and R507a. The equivalent Reynolds number model was modified using the void fraction correlation of Rigot in order to determine the frictional condensation pressure drop and the two-phase friction factor. The effects of vapor quality and mass flux on the pressure drop are discussed in this paper. The importance of using the alternative void fraction and friction factor models and correlations for the separated flow model is also addressed.  相似文献   

9.
A complete solution for boiling phenomena in smooth tubes has been giving as a procedure regarding with the calculation of convective heat transfer coefficient and pressure drop using accurate experimental data validated by flow regime maps and sight glasses on the experimental facility. The experimental study is conducted in order to investigate the effect of operating parameters on flow boiling convective heat transfer coefficient and pressure drop of R134a. The smooth tube having 8.62 mm inner diameter and 1100 mm length is used in the experiments. The effect of mass flux, saturation temperature and heat flux is researched in the range of 290–381 kg/m2 s, 15–22 °C and 10–15 kW/m2, respectively. The experiments revealed that the heat transfer coefficient and pressure drop are significantly affected by mass flux for all tested conditions. Moreover, the experimental results are compared with well-known heat transfer coefficient and frictional pressure drop correlations given in the literature. In addition, 122 number of heat transfer and pressure drop raw experimental data is given for researchers to validate their theoretical models.  相似文献   

10.
《Applied Thermal Engineering》2003,23(10):1209-1225
Experiments on the evaporative heat transfer and pressure drop in the brazed plate heat exchangers were performed with refrigerants R410A and R22. The plate heat exchangers with different 45°, 35°, and 20° chevron angles are used. Varying the mass flux of refrigerant (13–34 kg/m2 s), the evaporating temperature (5, 10 and 15 °C), the vapor quality (0.9–0.15) and heat flux (2.5, 5.5 and 8.5 kW/m2), the evaporation heat transfer coefficients and pressure drops were measured. The heat transfer coefficient increases with increasing vapor quality and decreasing evaporating temperature at a given mass flux in all plate heat exchangers. The pressure drop increases with increasing mass flux and quality and with decreasing evaporating temperature and chevron angle. It is found that the heat transfer coefficients of R410A are larger than those of R22 and the pressure drops of R410A are less than those of R22. The empirical correlations of Nusselt number and friction factor are suggested for the tested PHEs. The deviations between correlations and experimental data are within ±25% for Nusselt number and ±15% for friction factor.  相似文献   

11.
The present study illustrates new experimental two-phase flow pattern observations together with diabatic boiling and adiabatic two-phase frictional pressure drop results for ammonia (R717) flowing inside a 14-mm internal diameter, smooth horizontal stainless steel tube. The flow pattern observations were made for mass velocities of 50, 100 and 160 kg s?1 m?2 and saturation temperatures of ?14, ?2 and 12 °C for vapor qualities ranging from 0.05 to 0.6. The flow patterns observed during the study included: stratified-wavy, slug-stratified-wavy, slug, intermittent and annular. For all the experimental conditions, the flow structure observations were compared against the predictions of the flow pattern map model of Wojtan et al. [L. Wojtan, T. Ursenbacher, J.R. Thome, Investigation of flow boiling in horizontal tubes: part I – a new diabatic two-phase flow pattern map, Int. J. Heat Mass Transfer 48 (2005) 2955–2969] and showed very good correspondence. The frictional pressure drop measurements were obtained for vapor qualities from 0.05 to 0.6, saturation temperatures from ?14 to 14 °C, mass velocities from 50 to 160 kg s?1 m?2 and heat fluxes from 12 to 25 kW m?2. The experimental results show the traditional pressure drop trends: the frictional pressure drop increases with vapor quality and mass velocity. Moreover, the results also show that both diabatic and adiabatic frictional pressure drop values are similar, that is, the boiling process in itself does not affect the frictional pressure drop. The correlations of Friedel [L. Friedel, Improved friction drop correlations for horizontal and vertical two-phase pipe flow, in: European Two-Phase Flow Group Meeting, paper E2, Ispra, Italy, 1979], Lockhart and Martinelli [R.W. Lockhart, R.C. Martinelli, Proposed correlation of data for isothermal two-phase two-component in pipes, Chem. Eng. Process 45 (1949) 39–48] and Müller-Steinhagen and Heck [H. Müller-Steinhagen, K. Heck, A simple friction pressure correlation for two-phase flow in pipes, Chem. Eng. Process 20 (1986) 297–308] predicted only 54%, 52% and 60% of the experimental data within ±30%, respectively. The correlation of Grönnerud [R. Grönnerud, Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type of evaporators, part iv: two-phase flow resistance in boiling refrigerans, in: Annexe 1972-1, Bull. de l’Inst. Froid, 1979] predicted 93% of the data and the flow pattern based method of Moreno Quibén and Thome [J. Moreno Quibén, J.R. Thome, Flow pattern based two-phase frictional pressure drop model for horizontal tubes. Part II: new phenomenological model, Int. J. Heat Fluid Flow 28 (2007) 1060–1072] predicted more than 97% of the experimental data within the same error band, while the latter method captures almost 89% of the data within ±20%.  相似文献   

12.
Condensation heat transfer and pressure drop of R22, R410A and R407C were investigated experimentally in two single round stainless steel tubes with inner diameter of 1.088 mm and 1.289 mm. Condensation heat transfer coefficients and two phase pressure drop were measured at the saturation temperatures of 30 °C and 40 °C. The mass flux varies from 300 to 600 kg/m2 s and the vapor quality 0.1–0.9. The effects of mass flux and vapor quality were investigated and the results indicate that condensation heat transfer coefficients increase with mass flux and vapor quality, increasing faster in the high vapor quality region. The experimental data was compared with the correlations based on experimental data from large diameter tubes (dh > 3 mm), such as the Shah and Akers correlations et al. Almost all the correlations overestimated the present experimental data, but Wang correlation and Yan and Lin correlation which were developed based on the experimental data from mini-tubes predicted present data reasonably well. Condensation heat transfer coefficients and two phase pressure drop of R22 and R407C are equivalent but both higher than those of R410A. As a substitute for R22, R410A has more advantages than R407C in view of the characteristics of condensation heat transfer and pressure drop.  相似文献   

13.
Experiments of diabatic two-phase pressure drops in flow boiling were conducted in four horizontal flattened smooth copper tubes with two different heights of 2 and 3 mm. The equivalent diameters of the flat tubes are 8.6, 7.17, 6.25, and 5.3 mm. The working fluids are R22 and R410A, respectively. The test conditions are: mass velocities from 150 to 500 kg/m2 s, heat fluxes from 6 to 40 kW/m2 and saturation temperature of 5 °C (reduced pressures pr are 0.12 for R22 and 0.19 for R410A). The experimental results of two-phase pressure drops are presented and analyzed. Furthermore, the predicted two-phase frictional pressure drops by the flow pattern based two-phase pressure drop model of Moreno Quibén and Thome [J. Moreno Quibén, J.R. Thome, Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part I: Diabatic and adiabatic experimental study, Int. J. Heat Fluid Flow 28 (2007) 1049–1059; J. Moreno Quibén, J.R. Thome, Flow pattern based two-phase frictional pressure drop model for horizontal tubes, Part II: New phenomenological model, Int. J. Heat Fluid Flow 28 (2007) 1060–1072] using the equivalent diameters were compared to the experimental data. The model, however, underpredicts the flattened tube two-phase frictional pressure drop data. Therefore, correction to the annular flow friction factor was proposed for the flattened tubes and now the method predicts 83.7% of the flattened tube pressure drop data within ±30%. The model is applicable to the flattened tubes in the test condition range in the present study. Extension of the model to other conditions should be verified with experimental data.  相似文献   

14.
In the present work, the flow boiling heat transfer characteristics and pressure drop are experimentally investigated using multiwalled carbon nanotube (MWCNT)–R123-based nanofluids flowing inside a horizontal circular tube. The effects of particle concentration, mass flux, and vapor quality on the heat transfer coefficient (HTC) and pressure drop of MWCNT–R123-based nanofluid are analyzed. Results show that flow boiling HTC and frictional pressure drop increased with nanoparticle concentration, mass flux, and vapor quality as expected. The effects of nanoparticles on the flow boiling HTC and pressure drop are quantitatively analyzed by introducing a nanoparticle impact factor. A modified correlation for predicting the flow boiling HTC of nanorefrigerants is proposed, and the proposed correlation predicts 95% of the points with a deviation of ±20%. In addition, frictional pressure drop can be predicted using the Müller-Steinhagen and Heck correlation with a mean absolute error of 13.07% if the thermophysical properties of nanofluids are substituted.  相似文献   

15.
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m?2 s?1, heat flux from 0 to 55 kW m?2, exit saturation temperatures of 31 and 41°C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m?1 and from 1 to 7 kW m?2 K?1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.  相似文献   

16.
Based on experimental results of ternary non-azeotropic refrigerant mixture R417A flowing and boiling in one smooth and two internally grooved horizontal tubes with different geometrical parameters, a boiling heat transfer correlations was developed for refrigerant mixtures flowing inside micro-fin tubes by applying the enhancement factor in the present modified-Kattan model which was modified by the experimental data of R417A in a smooth tube. The comparison between the calculation and the experimental results indicates that the prediction by the present correlations is in good agreement with the experiment of refrigerant mixtures inside different micro-fin tubes with a standard deviation of ± 30% for vapor qualities below 80%.  相似文献   

17.
Cheol Huh  Moo Hwan Kim 《传热工程》2013,34(8-9):730-737
The boiling heat transfer and two-phase pressure drop of water in a microscale channel were experimentally investigated. The tested horizontal rectangular microchannel had a hydraulic diameter of 100 μ m and length of 40 mm. A series of microheaters provided heat energy to the working fluid, which made it possible to control and measure the local thermal conditions in the direction of the flow. Both the microchannel and microheaters were fabricated using a micro-electro-mechanical systems (MEMS) technique. Flow patterns were obtained from real-time flow visualizations made during the flow boiling experiments. Tests were performed for mass fluxes of 90, 169, and 267 kg/m2s and heat fluxes from 200 to 500 kW/m2. The effects of the mass flux and vapor quality on the local flow boiling heat transfer coefficient and two-phase frictional pressure gradient were studied. The evaluated experimental data were compared with existing correlations. The experimental heat transfer coefficients were nearly independent of the mass flux and vapor quality. Most of the existing correlations did not provide reliable heat transfer coefficient predictions for different vapor quality values, nor could they predict the two-phase frictional pressure gradient except under some limited conditions.  相似文献   

18.
ABSTRACT

Heat transfer and pressure drop characteristics of condensation for R410A inside horizontal tubes (dh = 0.25, 1, and 2 mm) at saturation temperatures Tsat = 310, 320, and 330 K are investigated numerically. The results indicate that local heat transfer coefficients and pressure drop gradients increase with increasing mass flux and vapor quality and with decreasing tube diameter and saturation temperature. Liquid film thickness also increases with increasing saturation temperature because of the lower surface tension at higher saturation temperature. When gravity dominates the condensation process, a vortex with its core lying at the bottom of the tube is found in the vapor phase region. For the annular flow regime, stream traces point from the symmetry plan to the liquid–vapor interface, where the vapor phase becomes the liquid phase. Numerical heat transfer coefficients and pressure drop gradients are compared to available empirical correlations. Two new models for heat transfer coefficients and frictional pressure drop gradients are developed based on the numerical work.  相似文献   

19.
The paper presents an experimental study of flow boiling heat transfer characteristics of refrigerant mixture R22/R114 in the annuli of a horizontal enhanced surface tubing evaporator. The test section had an inner tube bore diameter of 17.3 mm, an envelope diameter of 28.6 mm and an outer smooth tube of 32.3 mm internal diameter. The ranges of heat flux and mass velocity covered in the tests were 5–25 kW/m2 and 180–290 kg/m2/s, respectively, at a pressure of 570 kPa. The enhanced surface tubing data shows a significant enhancement of the heat transfer compared with an equivalent smooth tube depending on the mixture components and their concentrations. Correlations are proposed to predict such heat transfer characteristics as the average heat transfer coefficients as well as pressure drops of R22/R114 nonazeotropic refrigerant mixture flow boiling inside enhanced surface tubing. In addition, it was found that the refrigerant mixture's pressure drop is a weak function of the mixture composition.  相似文献   

20.
The pressure-drop characteristics during flow boiling in a single rectangular micro-channel with hydraulic diameter of 0.68 mm are presented. In the present study, pressure drop was studied at heat flux range of 7.63–49.46 kW/m2, mass flux range of 600–1400 kg/m2 s, and saturation temperature of 23, 27 and 31 °C. Experimental results indicated that the total pressure was dominated by frictional pressure drop. The increase of mass flux also increased the frictional pressure gradient, whereas the increase of saturation temperature reduced the frictional pressure gradient. In addition, heat flux also had an insignificant effect on the frictional the pressure gradient. A new correlation was also proposed for effective design of micro-channel heat exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号