首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Suwarno 《高电压技术》2008,34(12):2583-2588
Insulation is one of the most important parts in a high voltage equipment.There are gaseous,liquid and solid insulations which are commonly used.In a high voltage transformer for example the insulating materials are all used.During operation of a high voltage equipment high electric stress may occur.Under extreme condition failure of the insulation may take place.Excessive electric field in air may cause corona discharges while in liquid insulation discharges may take place in the form of streamer.This paper reports experimental results on the corona and streamer discharges in air and silicone oil.The discharges were artificially generated around a needle tip in a needle-plane electrode system with gap length of 4 mm under sinusoidal and triangular voltages.The needle was made of steel with tip radius of 3 μm and curvature angle of 30°.The needle was made by Ogura Jewelry.The discharge pulses were measured using personal-computer based partial discharge(PD)measurement system with sensitivity of better than 0.5 pC.The system is able to measure discharge in time sequential.Phase-resolved analysis of the discharges was done to interpret the physical processes behind the discharges.The experimental results showed that corona discharges took place at negative half cycles.The discharges were concentrated around 270° of phase angle of applied voltage.The discharge magnitude and discharge number of corona clearly dependent on the instantaneous of applied voltage.These were strongly supported by the application of triangular voltage.Streamer discharges occurred at both positive and negative half cycles.The discharges pulses concentrated around the peak of applied voltage at phase angle of 90° and 270°.Experimental results under sinusoidal and triangular voltages revealed that streamer discharge magnitude as well as probability of occurrence was strongly dependent on the instantaneous applied voltage.  相似文献   

2.
The aim of this paper was to give an overview on partial discharges under oscillating impulse voltage.Three models(void in solid,needle-plate in air and oil) were presented,which describe the stochastic discharge process and represent internal discharges in solids and corona in air or silicon oil.Moreover,an air cored Rogowski coil and a sampling resistor for partial discharge(PD) measurement were developed and introduced in this paper.PD inception and extinction voltages(PDIV,PDEV) under single oscillating impulse voltage and AC voltage were investigated with different test samples.Experimental results firstly revealed that the PD inception voltage(PDIV) decreased with increasing applied voltage;secondly the PD inception voltage for three different insulating materials,showed an escalating trend with increasing frequency of the applied voltage.It was proven that the characteristics of PD under oscillating impulse voltage were identical to the features under AC voltage,which could be measured with the phase resolved partial discharge analysis(PRPDA) technique.Based on the reorganization and analysis of PDs under oscillating impulse voltage,the information about insulation defects was extracted from the measured data and used for estimating the risk of insulation failure of the equipment.  相似文献   

3.
There was no well-resolved mechanism of audible noise caused by corona discharge on UHV transmission lines. Hence we measured the sound pressure of pulsed discharges between needle-plane electrodes under different discharge conditions in air, for revealing the intrinsic relationship between discharge and its audible noise(AN). The relationship between discharge parameters and audio characte- ristics was drawn from the analysis of the electric and sound signals obtained in experiments. Experiment results showed that nanosecond pulsed discharges produce the sound pressure with a microsecond pulse lagging behind the discharge pulse in their waveforms. The peak value of the sound pulse decreases and its high frequency component gradually attenuates, when the measuring distance from discharges increases. The sound pulses correlate with the discharge current and voltage significantly, especially the current. The audible noise produced by repetitive pulsed discharge increases with the strength, duration, and pulse repetition rate of discharge.  相似文献   

4.
To discuss the modes of dielectric barrier discharge(DBD) between needle-to-plane electrodes in air,DBD is generated and observed on a needle-to-plane device at atmospheric pressure air.Fast images of the DBD are taken by using a charge couple device(CCD) cinema with a macro lens,while the electrical and photo-electricity waveforms of the DBD are recorded.The current waveforms show that under an applied voltage of 3 kV,there are numerous short current pulses in both positive and negative half-periods of discharges.However,under 6 kV,there are still the numerous short current pulses in the positive half-periods,but only one wide current pulse in each negative half-period.This difference is also found in the photoelectric signals.The streamer,corona and glow discharges are observed from the images of the discharges at different applied voltages.The structure of glow discharge in the negative period is exactly the same as that of the low pressure glow discharge.However,in the positive period of discharge there is always a streamer.In the negative period of discharge,while the applied voltage increases,the transition from corona to glow discharge is observed.The progress of a transition between streamer and glow discharge at 6 kV during one period is analyzed.The glow discharge appearance is determined by two factors: the discharge current is limited to a certain extent by the dielectric layer; the charges deposited on the dielectric layer during the last half period enhance the intensity of the electric field.At an insufficient applied voltage,the cathode drop leads to no glow discharge,but Trichel pulses.  相似文献   

5.
基于UV检测的UHV输电线路起晕电压的试验研究(英文)   总被引:2,自引:2,他引:0  
刘云鹏  王会斌  陈维江 《高电压技术》2008,34(12):2536-2541
Corona discharge is being detected by UV imaging detection technology at home and abroad in recent years.This technology is used in the corona tests of conductor bundles in this paper.In order to further research the corona characteristic,optimize geometry parameters and diameter of sub-conductor,and increase corona onset voltage of transmission lines,corona tests of three model conductors which are placed inside the outdoor corona cage are conducted.Corona cage could be used to simulate the corona activities on transmission lines under a low voltage and different conditions in an effective and economical way.Photon which was created by UV light as a result of corona discharge on conductors is detected by the UV detection apparatus.The photon number within unit interval,namely photon counting rate is adopted as the parameter of quantifying the intensity of corona discharge.According to the apparent change of photon number,corona onset voltage can be judged.All tests are conducted under almost same atmosphere condition.Using the method,corona onset voltage is acquired.The results indicate that the tests have a good repeatability,in other words,repeating same test twice same result can be aquired.The corona onset voltage can be acquired exactly from the curve of applied voltage vs.photon counting rate.Therefore UV detection apparatus can not only used to find discharge point exactly,but also applied on corona discharge research and live detection for power equipments.The method using in this paper is proved that is a new available method.  相似文献   

6.
Partial discharges (PDs) due to artificial void in samples of LDPE nanocomposite sheet have been investiga- ted in this work. PDs may cause the degradation of insulating materials and may affect the lifetime of high-voltage ap- paratus. An experimental work using sphere ball-plane electrode system (CIGRE Method II) and a 1.0 mm LDPE composite sheet was carried out. Different weight percentages of nanosilica (0%, 2%, 4%, 6% and 8%) were used. PD experimental results, such as PD magnitude and PD number (both PD pulse polarities), as functions of the ap- plied stress duration at a specified applied voltage were compared. The surface morphology of specimens was also presented and this conforms to the PD findings. The experimental results show that the PD characteristics of the LDPE generally improve with the introduction of nanosilica, the composite with the highest content of filler, namely the 8% (wt) nanosilica sample has the least partial discharge activities.  相似文献   

7.
Converter transformers are one of the most important electrical apparatuses in the ultra high voltage(UHV) DC transmission systems.The valve side and the low voltage(LV) bushing are stressed by long-term AC and DC composite voltage leading to significant partial discharge(PD) and posing great danger to the insulation system.In this paper AC and DC composite voltage is applied on a metal needle-plate model to produce PD signal sequences,and then the pulse waveshape and frequency spectrum are analyzed and compared with PD signals under conventional AC or DC voltage.In the end,the phase-resolved distribution is analyzed to depict the new characteristics of PD under this composite voltage.  相似文献   

8.
The negative DC corona discharge in air at atmospheric pressure was investigated in a needle-to-water system to obtain the pressure distribution of corona ionic wind.The deformation of water surface was measured and the distribution of wind pressure over the water surface was calculated.The effects of varying discharge parameters,such as applied voltage,gap spacing,tip radius of needle,and the shape of grounded electrode,on the wind pressure were studied.The measured wind pressure ranges from several Pa to several tens of Pa and up to 33 Pa over a small area;the pressure is comparatively large in the center and decreases quickly outwards.In the experiment system,a higher voltage on a 3 mm gap resulted in a stronger pressure of the ionic wind;around the onset voltage,using a needle with tip radius of 50μm obtained a larger wind pressure than using a needle with 100μm tip radius,but the latter one can produce larger pressure at higher voltages.Plus,the shape of the grounded electrode only influences the wind pressure a little.  相似文献   

9.
The valve side windings of converter transformers bear AC, DC, impulse, and reversal-polarity voltages during operation, which could result in serious insulation problems of the equipment. By performing experiments with surface discharge model of oil-paper insula- tion at 80 ℃ under combined AC-DC voltage for 200 h, we studied the spectrums and statistical parameters of partial discharges at different discharge stages. Furthermore, some fingerprint parameters were calculated in order to estimate the development situation of par- tial discharge, while the characteristic gases dissolved in the transformer oil were measured by gas chromatography. The surface discharges in the experiments were observed using a high speed camera, and a full discharge process could be marked off into four stages as follows. ①The elementary stage. When a partial discharge occurs near electrodes, electrical charges are injected into the region near electrodes and causing bubble generation. ②Due to their high resistivity and low dielectric constant, the bubbles would bare the major part of the voltage applied to samples. Therefore, discharge happens inside the small bubbles, and it emits a lot of light. ③Micromolecules of gas are produced in discharge, and further ionization in the transformer oil takes place simultaneously when high-energy electrons collide with oil molecules. ④The carrier charge moves forward to electrodes driven by the applied electric field, till they neutralize with the charge from electrodes, and hence discharge channels are formed subsequently.  相似文献   

10.
An online partial discharge (PD) measurement performed on a high voltage direct current (HVDC) wall bushing successfully identified the presence of internal discharges. The wall bushing is a sulfur hexafluoride gas-insu- lated bushing, rated for 500 kV dc and terminated on a thyristor-controlled HVDC converter bridge. The measure- ment of PD within the HVDC station environment is particularly challenging due to the high levels of electromagnetic noise caused by thyristor switching events and external air-corona from the neighboring high-voltage equipment. An additional challenge is the "mixed" voltage stress on the bushing insulation, which has both ac and dc high-voltage components. There are also fast transients during the firing of thyristors in the HVDC conversion process that cause added stress to the insulation. As a result, the analysis and interpretation of PD data for HVDC equipment is more complex; PD pulses may occur in response to the ac, dc, or switching transient voltage stresses. In this paper, an on- line PD measurement strategy for noise filtering and isolation of PD sources within the bushing are discussed. The PD measurement data is plotted on a phase-resolved diagram where the line supply power cord voltage was used as a reference. The phase-resolved diagram appears to suggest that the fast transients, caused during switching, trigger some PD events. Measurements were also performed with the aid of a modern PD measurement instrument having noise separation capabilities. The findings from the online PD measurements are verified with physical evidence, found after the bushing was removed from service, suggested internal PD had occurred inside the bushing.  相似文献   

11.
陈伟根  陈曦  谢波  刘军 《高电压技术》2013,(8):1837-1844
Numerous equivalent circuits for cavity discharges have been developed, yet most of these models cannot provide simulated sig- nals that precisely reveal the variability of the discharge’s characteristic parameters, such as repetition rate, magnitude and phase of discharges, which makes them not suitable for intensive studies of discharge process. Therefore, using Simulink code, we theoretically ana- lyzed and studied the classical equivalent circuits of cavity discharges, as well as the influence of circuit components on simulation results, and then proposed a novel equivalent circuit, the key parameters of which were determined according to the physical behavior of cavity discharges. In the novel equivalent circuit, the repetition rate can be changed by discharge resistance, inception and residual voltages; meanwhile the phase of discharge can be controlled by adjusting the parameters of shunt resistance. Furthermore, a controlled current source as a function of space charge is introduced in the equivalent circuit. Compared with the former ones, the simulated signals obtained by this novel model are better approximation of real signals. This work could be referred by latter studies of the characteristics and the me- chanisms of cavity discharge in oil-paper insulation.  相似文献   

12.
According to the mechanism of corona discharge at the end of the generator stator bar,a model of stator bar end corona discharge is presented.In a closed corona cage at low atmospheric pressure,the corona discharge characteristics of the stator bar end model were observed using an ultraviolet imaging instrument and an oscilloscope.The influence of atmospheric pressure on the corona inception voltage and discharge intensity was analyzed.The results show that the corona inception voltage is lower under lower atmospheric pressure;the discharge intensity is stronger under lower atmospheric pressure.The particles swarm-optimized support vector machine was employed to analyze the impacts of air pressure and humidity on the corona inception voltage.Error between the calculated value of the established model and the experimental value is less than 5%.The established model can be used to calculate the corona inception voltage of the stator bar end model.  相似文献   

13.
The converter transformer is one of the most critical equipments in high-voltage direct current transmission systems.Valve-side windings have to withstand complex stresses combined of AC,DC,and pulsed voltages.Partial discharges(PDs) can thus easily occur in oil-impregnated paper insulation.The current paper presents the statistical phase-resolved distributions of partial discharges in oil-paper insulation under combined AC and DC voltage stress.First,the voltages in the converter transformer were analyzed.In the experiments,four artificial insulation defect models were designed to generate PD signals under AC-DC combined voltage stress detected by a Rogowski coil sensor.Histograms including the φ-q-n data of these PD signals were created.The variations of φ-q-n data generated by PDs in different insulation defect models were analyzed while increasing the test voltage.Experimental results showed that the PD phase-resolved distributions of different insulation defect models were different from one another.The findings of the current study are useful in further research on the mechanism and pattern recognition of PDs in converter transformers.  相似文献   

14.
Pulsed discharges can generate high power densities and high equivalent electric fields in plasma to emit X-rays,which is closely related to discharge mechanism.In this paper,discharge characteristics and X-ray emission of typical nanosecond-pulse discharges(corona,diffuse,spark or arc)are reviewed.Especially,the diffuse discharges are observed at pulse repetition frequencies up to 1 kHz.Factors influencing the discharge characteristics and X-ray emission are analyzed,such as the gap spacing,parameters of the applied pulse(amplitude,pulse repetition frequency),anode and cathode materials,and curvature radius of cathode.It is concluded that the maximum X-ray intensity is obtained in a diffuse discharge,and the X-ray intensity is affected by the pulse repetition frequency,applied voltage,anode material,and curvature radius of cathode.For example,X-ray intensity increases with the pulse repetition frequency and the atomic numbers of the anode material,but it decrease with the increase of curvature radius.It is also shown that the cathode material has no obvious influence on the X-ray intensity.  相似文献   

15.
Corona performance is an important factor should be taken into consideration in power transmission project designs.Power equipments operate in various environments which will affect their corona inception voltages and thus influence the operation safety of transmission systems.In this paper,corona characteristic tests of bus bars,shielding rings,simulated eight-bundled conductors,and insulators were carried out in areas with different altitudes up to 4 300 m.Simulation tests of environmental factors were carried out in a HVDC corona cage.Based on site tests,it is concluded that corona inception voltages of both bus bar and shielding ball increase with their height to the ground or their dimensions.The influences of water droplet,wind,icing and surface contamination on corona inception voltage were also obtained from the simulation tests.The corona inception voltage of mist is higher than that in saturated water droplets.Conductivity of precipitation has little impact on corona discharges.Corona inception voltage decrease with increasing wind speed.The influence on corona current of glaze is the biggest,and that of hard rime is more than that of soft rime.The impact of pollution material on corona discharge depends on the size of pollution particle.Test results obtained in this paper are solid reference for design of UHV DC transmission projects.  相似文献   

16.
高压下非均匀电场中局放机理的建模(英文)   总被引:1,自引:1,他引:0  
Partial discharges in air in non-uniform electric field occur in surroundings made of high curvature elements.The equivalent electrode system,needle-plane refers both to external components of high voltage insulating systems and to micro sharpness in the internal structure of those systems.The ionization zone,accumulation of space charge and formation of corresponding current pulses depend on electrode configuration,voltage level,pressure,temperature and humidity of air.The assessment of pressure influence on discharge mechanism in non-homogenous electric field has been performed on the basis of empirical density distributions of discharge charges at different voltage levels,electrode distance,curvature of high voltage electrode and taking into account solid dielectric barrier in serial configuration.The measurement results obtained at variable voltage level yield the influence of electric field strength in the needle electrode zone.While increasing voltage,a deviation from normal distribution may be observed that reveals other forms of discharge.  相似文献   

17.
Direct current (DC) partial discharge (PD) test has drawn extensive attention from world-wide electric power research institutes in recent years. However, presently, no DC PD detection device on the market has the statistical function. Thus, we developed a test system for PD detection under DC voltage, which is characterized by strong anti-jamming capability, continuous high-speed real-time data acquisi- tion and effective, complete detection of DC PD signals. The DC PD mechanism, as well as the measuring principles, software system, and hardware design of the test equipment were introduced. Adopting typical electrode pairs, we tested the statistical spectrum of PD under DC voltage. The main difference in statistical spectrums between parallel plate electrodes and needle-plate electrodes was that the time interval between two consecutive discharges for needle-plate electrodes has obviously larger variation range than that for parallel plate electrodes, which could be the convincing proof for distinguishing the type of electrodes under DC PD. Practical results indicate that the proposed sys- tem can measure time domain signals of DC PD of oil-paper insulation effectively and promptly, and it can be used to determine and detect defects in DC power transmission equipment.  相似文献   

18.
杜伯学  王立 《高电压技术》2013,(8):1852-1857
The diagnosis of water trees of cable insulation is of great importance as the water-treeing is a primary cause of aging breakdown for the middle voltage cables. In this paper, it is described how the water-tree-aged 10 kV XLPE cables were diagnosed. The cables were subjected to electrical stress of 5.9 kV/mm and a thermal load cycle in a curved water-filled tube for 3, 6 and 12 months of aging in accor- dance with the accelerated water-tree test method. The aged cables were used as the samples for water-tree diagnosis. First, the water-tree degraded cable, was charged by a DC voltage, and then the cable was grounded while a pulse voltage was applied to it for releasing the space charge trapped in the water trees. The amount of the space charge, which corresponds to the deterioration degree of the water trees, was calculated. The effects of DC voltage amplitude, pulse voltage repetition rate and aging conditions on the amount of the space charge were studied. Obtained results show that the amount of the space charge has a positive correlation with the applied DC voltage and the ag- ing time of the cables, and that a peak value of space charge appears with the increase of the pulse voltage repetition rate. An optimum pulse voltage repetition rate under which the space charge can be released rapidly is obtained. Furthermore, the releasing mechanism of space charge by the pulse voltage is discussed. Accumulated results show that the presented method has a high resolution for the diagnosis of water tree degradation degree and is expected to be applied in practice in future.  相似文献   

19.
XU Zheng  XU Tao  XUE Yinglin 《高电压技术》2012,38(12):3119-3124
As a critical part in the DC filter design,it is very important to quickly and correctly calculate the equivalent disturbing current.A general method for calculating the equivalent disturbing current of high voltage direct current(HVDC) transmission lines is proposed.In this approach,one 12-pulse converter was represented by four 3-pulse harmonic voltage sources in series,the DC network was described by a multi-phase coupled transmission line model,and the harmonic currents of certain frequency were solved based on the basic nodal analysis method.The multi-phase coupled transmission line model was described briefly,which could treat DC transmission lines of any structure,e.g.one or two DC circuits in a tower.The harmonic voltage source calculation steps were outlined,the steps to form the nodal admittance matrix were discussed,and the equations to calculate the equivalent disturbing current of the DC line were given.To verify the general applicability of the suggested approach,two different HVDC projects were studied:a traditional single circuit HVDC project,and a newly constructed HVDC project with double circuits on a same tower.The results show that the proposed method can calculate the equivalent disturbing current of the above two projects effectively,and has obvious advantages such as easy implementation,fast calculation and wide applicability.According to the two cases,the distributions of the equivalent disturbing currents along the line have the same trend,i.e.,the maximum value of the equivalent disturbing currents appears at the line inlet of both sides.Plus there is no fixed relationship between the equivalent disturbing currents and the HVDC line structures,because the equivalent disturbing current depends on many factors,such as background harmonics and converter transformer parameters.  相似文献   

20.
In order to solve the problems of TEV(transient earth voltage) utilization,such as single judgment criterion and low reliability of PD detection in HV switchboard,this paper discussed the method on how to make a better utilization of TEV in PD detection of metal-enclosed switchgears.Through discussing the relationship among the temporal phase,number of pulses and threshold of measuring and extracting the features corresponding to different typical defects,test results showed that the needle discharge distributed in 0°~90°and 200°~340°with low appearance probability above high measurement threshold;internal discharge distributed in 0°~90°and 270°~315°,and showed a similar decreasing trend under increasing of the threshold in the two regions;suspended discharge distributed in 0°~135°and 180°~315°where the PD in negative half periods decreased more seriously than those in positive half with increasing threshold.These results followed the doctrine of consistency with the conclusions that were obtained by using the traditional pulse current method.The possibility of using TEV method to make identification of PD defects has been proved to prepare for further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号