首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Oxygen reduction reaction (ORR) on Pt microelectrode was used for developing a micro pH sensor for scanning electrochemical microscopy (SECM) study in this work. When the potential of Pt microelectrode was held constant in ORR region, the ORR current (cathodic current) increased with decreasing solution pH and vice versa. The response time of the ORR current to pH changes was measured to be ca. 30 ms which implies that the pH response is fast enough for monitoring the temporal pH changes. Furthermore, a fine linear relationship was found to exist between the half wave potential of ORR (E1/2) and the solution pH value, and the slope is −46 mV/pH. The Pt micro pH sensor was located 1 μm above the LaNi5−xAlx (x = 0, 0.3) substrate electrode surface in pH = 9 KOH solution to perform the tip-substrate voltammetry of SECM. In tip voltammogram, the ORR tip current qualitatively reflects the transit solution pH changes during LaNi5−xAlx discharge reaction. Also, the minimum values of the solution pH near LaNi5 and LaNi4.7Al0.3 surface during the discharge reaction were quantitatively detected; they were 7.17 and 7.57, respectively. The result indicates that Al partial substitution for Ni degrades the maximum discharge ability of the alloy and decreases the hydrogen diffusion coefficient in alloy bulk.  相似文献   

2.
Novel carbon supported Pt/SnOx/C catalysts with Pt:Sn atomic ratios of 5:5, 6:4, 7:3 and 8:2 were prepared by a modified polyol method and characterized with respect to their structural properties (X-ray diffraction (XRD) and transmission electron microscopy (TEM)), chemical composition (XPS), their electrochemical properties (base voltammetry, COad stripping) and their electrocatalytic activity and selectivity for ethanol oxidation (ethanol oxidation reaction (EOR)). The data show that the Pt/SnOx/C catalysts are composed of Pt and tin oxide nanoparticles with an average Pt particle diameter of about 2 nm. The steady-state activity of the Pt/SnOx/C catalysts towards the EOR decreases with tin content at room temperature, but increases at 80 °C. On all Pt/SnOx/C catalysts, acetic acid and acetaldehyde represent dominant products, CO2 formation contributes 1-3% for both potentiostatic and potentiodynamic reaction conditions. With increasing potential, the acetaldehyde yield decreases and the acetic acid yield increases. The apparent activation energies of the EOR increase with tin content (19-29 kJ mol−1), but are lower than on Pt/C (32 kJ mol−1). The somewhat better performance of the Pt/SnOx/C catalysts compared to alloyed PtSnx/C catalysts is attributed to the presence of both sufficiently large Pt ensembles for ethanol dehydrogenation and C-C bond splitting and of tin oxide for OH generation. Fuel cell measurements performed for comparison largely confirm the results obtained in model studies.  相似文献   

3.
RuxSey nanoparticles supported on different carbon substrates were synthesized by microwave heating of ethylene glycol solutions of Ru(III) chloride and sodium selenite at different pH and Ru/Se mole ratios. The resulting catalysts were used for the electrochemical oxygen reduction reaction (ORR) in acidic solution. The electrochemical activity was highest for the supported catalyst synthesized at pH 8. Increasing the Se concentration of the catalyst up to 15 mol% increased the catalytic activity for the ORR; at this Se concentration, the activity of the catalyst was considerably higher than that observed for pure Ru catalyst synthesized at exactly the same conditions. The influence of the type of carbon support on the activity of the electrocatalyst was also investigated. Among the different supports, including carbon black (Vulcan XC-72R) (C1), and nanoporous carbons synthesized from resorcinol- (C2) and phloroglucinol-formaldehyde (C3) resins, the RuxSey catalyst supported on C3 exhibited highest activity for ORR.  相似文献   

4.
Isomerization of n-hexane and n-pentane were studied using equivalent 5 monolayers of MoO3 deposited on TiO2. Addition of 2.5% Pt by weight of MoO3 on the Mo catalyst resulted in an increase in the catalytic activity of the system in favor of hydrocracking products. Surface characterization by XPS-UPS and ISS reveal that the sample surface contains Oxygen, Molybdenum, Platinum and Titanium. Apparently, the metallic properties of the deposited Pt favors the hydrocracking reactions and becomes dominant at reaction temperatures higher than 623 K. Balanced metal-acid functions in MoO2 − x(OH)y phase seems to be in optimized condition toward the hydroisomerization process. The contribution of Platinum addition to this catalytic reaction is not obvious. Combination of surface XPS-UPS, ISS and catalytic reactions carried out at similar experimental conditions enabled us to have better insight concerning the catalytic activities of the different chemical species present on the sample surface.  相似文献   

5.
TiO2-Pt/CNT catalysts before and after heat treatment were prepared. Their catalytic activities for methanol and CO electro-oxidation were studied in detail. The results showed that the proper amount of hydrous TiO2 in TiO2-Pt/CNTs (e.g. heated at 200 °C for 2 h) was favorable for enhancing the catalytic activity of Pt/CNTs, which provided evidence for bi-functional mechanism. The studies on the catalysts with different TiO2/Pt molar ratio displayed that the optimum molar ratio varied with the increase of heat treatment temperature. It was found that the optimum molar ratio of TiO2/Pt was at 1:2 for the catalysts without heat treatment and was at 1:1 for the catalysts by heat treatment at 500 °C. This fact was ascribed to the difference in compact degree between TiO2 and Pt/CNTs before and after heat treatment. Considering the influence of heating temperature, it was found that TiO2-Pt/CNT catalyst heated at 200 °C for 2 h had better catalytic activity for methanol oxidation.  相似文献   

6.
PtRuSnOx supported on multi-wall carbon nanotubes (MWCNTs) was prepared by ultrasonic-assisted chemical reduction method. The as-prepared catalyst was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns indicate that Pt exists as the face-centered cubic structure, Ru is alloyed with platinum, while non-noble metal oxide SnOx exists as an amorphous state. From TEM observation, PtRuSnOx is well dispersed on the surface of MWCNTs with the particle size of several nanometers. The electrochemical properties of the as-prepared catalyst for methanol electrooxidation were studied by cyclic voltammetry (CV) and chronoamperometry (CA). The onset potential of methanol oxidation on PtRuSnOx and PtRu catalysts is much more negative than that on Pt catalyst, shifting negatively by about 0.20 V, while the peak current density of methanol oxidation on PtRuSnOx is higher than that on PtRu. Electrochemical impedance spectroscopy (EIS) studies also show that the reaction kinetics of methanol oxidation is improved with the presence of SnOx. The addition of non-noble metal oxide SnOx to PtRu promotes the catalytic activity for methanol electrooxidation and the possible reaction mechanism is proposed.  相似文献   

7.
Mesoporous and nanosized cobalt aluminate spinel with high specific surface area was prepared using microwave assisted glycothermal method and used as soot combustion catalyst in a NOx + O2 stream. For comparison, zinc aluminate spinel and alumina supported platinum catalysts were prepared and tested. All samples were characterised using XRD, (HR)TEM, N2 adsorption–desorption measurements. The CoAl2O4 spinel was able to oxidise soot as fast as the reference Pt/Al2O3 catalyst. Its catalytic activity can be attributed to a high NOx chemisorption on the surface of this spinel, which leads to the fast oxidation of NO to NO2.  相似文献   

8.
Ni/MgxTi1 − xO catalysts were prepared through a wet impregnation method by dispersing Ni on MgxTi1 − xO composite oxides obtained via a sol–gel technique. The Ni/MgxTi1 − xO catalysts were characterized by various means including ICP–OES, BET, XRD, H2–TPR, SEM, and TG. No free NiO peak was found in all XRD patterns of the Ni/MgxTi1 − xO catalysts. The H2–TPR and chemisorption results indicated that adding Ti to the NiO–MgO system obstructed the formation of solid solution, and thus increased the reducibility of the catalysts. The prepared MgxTi1 − xO composite oxides had the same ability to disperse Ni as TiO2 and MgO. The tri-reforming (simultaneous oxygen reforming, carbon dioxide reforming, and steam reforming) of methane over Ni/MgxTi1 − xO catalysts was carried out in a fixed bed flow reactor. The conversions of CH4 and CO2 can respectively be achieved as high as above 95% and 83% over Ni/Mg0.75Ti0.25O catalyst under the reaction conditions. The activity of Ni/Mg0.75Ti0.25O and Ni/Mg0.5Ti0.5O did not decrease for a reaction period of 50 h, indicating their rather high stability. The experimental results showed that the nature of support, the interaction between metal and support, and the ability to be reduced played an important role in improving the stability of catalysts.  相似文献   

9.
The electrochemical behaviors of Bi(III), Te(IV), Sb(III) and their mixtures in DMSO solutions were investigated using cyclic voltammetry and linear sweep voltammetry measurements. On this basis, BixSb2−xTey film thermoelectric materials were prepared by potentiodynamic electrodeposition technique from mixed DMSO solution, and the compositions, structures, morphologies as well as the thermoelectric properties of the deposited films were also analyzed. The results show that BixSb2−xTey compound can be prepared in a very wide potential range by potentiodynamic electrodeposition technique in the mixed DMSO solutions. After anneal treatment, the deposited film prepared in the potential range of −200 to −400 mV shows the highest Seebeck coefficient (185 μV/K), the lowest resistivity (3.34 × 10−5 Ω m), the smoothest surface, the most compact structure and processes the stoichiometry (Bi0.49Sb1.53Te2.98) approaching to the Bi0.5Sb1.5Te3 ideal material most. This Bi0.49Sb1.53Te2.98 film is a kind of nanocrystalline material and (0 1 5) crystal plane is its preferred orientation.  相似文献   

10.
L Xiong 《Electrochimica acta》2004,49(24):4163-4170
Pt/TiOx/C nanocomposites have been synthesized by depositing hydrated titanium oxide on carbon-supported Pt (Pt/C), reducing H2PtCl6 with sodium formate on carbon-supported hydrated titanium oxide (TiO2/C), and simultaneously depositing hydrated titanium oxide and reducing H2PtCl6 with formate on carbon support, followed by heat treatment at 500 and 900 °C in 90% Ar-10% H2 mixture. The catalytic activity for oxygen reduction was evaluated in half cells with sulfuric acid electrolyte and in single direct methanol fuel cells (DMFC). Tolerance to methanol was studied with half cells containing sulfuric acid mixed with methanol. Charge transfer resistance and electrochemical active surface area of the Pt/TiOx/C catalysts were studied with impedance and cyclic voltammetry measurements. Both the synthesis methods and heat treatments influence the catalytic activity, and some of the Pt/TiOx/C composites exhibit higher catalytic activity than Pt/C. The Pt/TiOx/C catalysts also exhibit better methanol tolerance than Pt/C. The mechanism for the enhanced catalytic activity of Pt/TiOx/C is discussed.  相似文献   

11.
Xuguang Li 《Electrochimica acta》2006,51(17):3477-3483
In this work, carbon supported PtxPd1−x (x = 0-1) nanocatalysts were investigated for formic acid oxidation. These catalysts were synthesized by a surfactant-stabilized method with 3-(N,N-dimethyldodecylammonio) propanesulfonate (SB12) as the stabilizer. They show better Pt/Pd dispersion and higher catalytic performance than the corresponding commercial catalysts. Furthermore, the electrocatalytic properties of PtxPd1−x/C were found to depend strongly on the Pt/Pd deposition sequence and on the Pt/Pd atomic ratio. At a lower potential, formic acid oxidation current on co-deposited PtxPd1−x/C catalysts increase with increasing Pd surface concentration. Nanoscale Pd/C is a promising formic acid oxidation catalyst candidate for the direct formic acid fuel cell.  相似文献   

12.
The microwave dielectric properties of (BaxMg1−x)(A0.05Ti0.95)TiO3 (A=Zr, Sn) ceramics were investigated with regard to substitution of Ba for Mg of A-site. The microwave dielectric properties were correlated with the Ba content. With an increase in Ba content from 0.01 to 0.1, the dielectric constant and the τf value increased, but the Q×f value decreased. The sintered (BaxMg1−x)(Zr0.05Ti0.95)TiO3 (called BxMZT) ceramics had a permittivity in the range of 19.1−20.6, quality factor from 180,000 to 25,000 GHz, and variation in temperature coefficient of resonant frequency from −35 to −39 ppm/°C with increasing composition x. For sintered (BaxMg1−x)(Sn0.05Ti0.95)TiO3 (called BxMST) ceramics, the dielectric constant increased from 19 to 20.5, Q×f value increased from 120,000 to 37,000 (GHz), and the τf value increased from −50 to −3.3 ppm/°C as the x increased from 0.01 to 0.1. When A=Sn and x=0.1, (Ba0.1Mg0.9)(Sn0.05Ti0.95)TiO3 ceramics exhibited dielectric constant of 20.5, Q×f value of 37,000 (GHz), and a near-zero τf value of −3.3 ppm/°C sintered at 1210 °C for 4 h.  相似文献   

13.
The Mg-Zn interaction effect of KyMg1 − xZn1 + xO3 heterogeneous type catalyst and its performance on transesterification of palm oil have been studied using the response surface methodology and the factorial design of experiments. The catalyst was synthesized using the co-precipitation method and the activity was assessed by transesterification of palm oil into fatty acid methyl esters. The ratio of the Mg/Zn metal interaction, temperature and time of calcination were found to have positive influence on the conversion of palm oil to fatty acid methyl ester (FAME) with the effect of metal to metal ratio and temperature of calcination being more significant. The catalytic activity was found to decrease at higher calcination temperature and the catalyst type K2Mg0.34Zn1.66O3 with Mg/Zn ratio of 4.81 gave FAME content of 73% at a catalyst loading of 1.404 wt.% of oil with molar ratio of methanol to oil being 6:1 at temperature of 150 °C in 6 h. A regression model was obtained to predict conversions to methyl esters as a function of metal interaction ratio, temperature of calcination and time. The observed activity of the synthesized catalyst was due to its synergetic structure and composition.  相似文献   

14.
The TiO2 support materials were synthesized by a chemical vapor condensation (CVC) method and the subsequent MnOx/TiO2 catalysts were prepared by an impregnation method. Catalytic oxidation of toluene on the MnOx/TiO2 catalysts was examined with ozone. These catalysts had a smaller particle size (9.1 nm) and a higher surface area (299.5 m2 g−1) compared to MnOx/P25-TiO2 catalysts. The catalysts show high catalytic activity with the ozone oxidation of toluene even at low temperature. As a result, the synthesized support material by the CVC method gave more active catalyst.  相似文献   

15.
Kinetics of RuxMoySez nanoparticles dispersed on carbon powder was studied in 0.5 M H2SO4 electrolyte towards the oxygen reduction reaction (ORR) and as cathode catalysts for a proton exchange membrane fuel cell (PEMFC). RuxMoySez catalyst was synthesized by decarbonylation of transition-metal carbonyl compounds for 3 h in organic solvent. The powder was characterized by X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. Catalyst is composed of uniform agglomerates of nanocrystalline particles with an estimated composition of Ru6Mo1Se3, embedded in an amorphous phase. The electrochemical activity was studied by rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) techniques. Tafel slopes for the ORR remain invariant with temperature at −0.116 V dec−1 with an increase of the charge transfer coefficient in dα/dT = 1.6 × 10−3, attributed to an entropy turnover contribution to the electrocatalytic reaction. The effect of temperature on the ORR kinetics was analyzed resulting in an apparent activation energy of 45.6 ± 0.5 kJ mol−1. The catalyst generates less than 2.5% hydrogen peroxide during oxygen reduction. The RuxMoySez nanoparticles dispersed on a carbon powder were tested as cathode electrocatalyst in a single fuel cell. The membrane-electrode assembly (MEA), included Nafion® 112 as polymer electrolyte membrane and commercial carbon supported Pt (10 wt%Pt/C-Etek) as anode catalyst. It was found that the maximum performance achieved for the electro-reduction of oxygen was with a loading of 1.0 mg cm−2 RuxMoySez 20 wt%/C, arriving to a power density of 240 mW cm−2 at 0.3 V and 80 °C.  相似文献   

16.
A novel Pt4ZrO2/C catalyst was prepared and compared with 20 wt.% Pt/C in terms of the sintering resistance and corrosion resistance. To evaluate their sintering resistance and corrosion resistance properties, an accelerated ageing test (AAT) was performed. The catalysts before and after AAT were characterized by cyclic voltammetry (CV), rotating disk electrode (RDE) and X-ray diffraction (XRD). After AAT, the dissolution rate of Pt and Zr in H3PO4 media (105 wt.%, 204 °C) was characterized by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The electrochemical area (ECA) changes of thin film electrodes based on Pt4ZrO2/C and Pt/C catalysts were also evaluated using continuous CV sweep technique. All the results showed that Pt4ZrO2/C has higher sintering resistance and corrosion resistance than Pt/C. ‘Anchor effect’ is proposed to explain the enhanced effect of ZrO2 in Pt4ZrO2/C binary catalyst compared with Pt/C that contain platinum alone.  相似文献   

17.
Carbon supported RuSex (x = 0.35-2) catalysts of controlled stoichiometry and phase are synthesized via precipitating ruthenium nanoparticles on Vulcan XC-72R, then selenizing ruthenium with hydrogen annealing. The competition for Se between solid-state Ru selenization and volatile selenium hydride formation results in RuSex nanoparticles with the pyrite structure, the Ru hcp structure, or a mixture of the two. These catalysts are methanol tolerant, and catalytically active toward oxygen reduction reaction (ORR). RuSex/C (x ≅ 2) with a pyrite structure, produced at 400 °C, exhibits catalytic activity and stability superior to that of RuSex/C with a ruthenium hcp structure or a mixed phase. And this pyrite RuSex/C (x ≅ 2) catalyst yields H2O2 less than 1.5% in the technically pertinent potential range of 0.4-0.6 V (vs. Ag/AgCl). Its stability is verified in 100 CV cycles, which shows that the catalyst annealed at 400 °C is more enduring in potential cycling over 0.65 V (vs. Ag/AgCl), compared with the RuSex/C catalyst annealed at 300 °C and the RuSecluster/C reference catalyst prepared by thermolysis of Ru3(CO)12. After CV cycles, the 400 °C-annealed catalyst still exhibits a higher ORR activity than the other two catalysts.  相似文献   

18.
Amorphous LiCoO2 thin films were deposited on the NASICON-type glass ceramics, Li1+x+yAlxTi2−xSiyP3−yO12 (LATSP), by radio frequency (RF) magnetron sputtering below 180 °C. The as-deposited LiCoO2 thin films were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscope. All-solid-state Li/PEO18-Li (CF3SO2)2N/LATSP/LiCoO2/Au cells were fabricated using the amorphous film. The electrochemical performance of the cells was investigated by galvanostatic cycling, cyclic voltammetry, potentiostatic intermittent titration technique and electrochemical impedance spectroscopy. It was found that the amorphous LiCoO2 thin film shows a promising electrochemical performance, making it a potential application in microbatteries for microelectronic devices.  相似文献   

19.
A redox couple based electrocatalyst comprising of Pt-Multi Wall Carbon NanoTube (Pt-MWCNT) promoted with molybdenum oxide (MoOx, 2 < x < 3) nanoparticles was prepared. The objective was to effectively organize the Pt-MoOx interface on the smooth MWCNT surface to overcome the practical difficulties associated with establishing such interface with Pt dispersed on carbon morphologies possessing surface irregularities. The present study revealed the importance of stringent controlling of the additive level for maintaining a balanced bifunctional behavior of the catalyst combination through the synergistic effects by the components and the need of a proton conducting membrane operable at high temperature to get better output from the Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems. An indigenously developed polybenzimidazole (PBI) membrane was used to fabricate a membrane electrode assembly (MEA) as it can be operated at higher temperatures compared to that of Nafion membranes. MoOx additive level was carefully controlled by monitoring the active Pt area by cyclic voltammetry. All prepared electrocatalysts were characterized by using HRTEM, XRD and XPS to get information on dispersion and morphology, crystalinity and oxidation state of different elements, respectively. The system prepared with 5% MoOx addition with respect to Pt (hereafter Pt-MoOx(5%)-MWCNT) displayed balanced active Pt area and excellent oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) activities. Rotating Disk Electrode (RDE) system was extensively utilized to understand the ORR kinetics and the favorable role of MoOx as the promoter in the reaction. The kinetic current (jk) measured at 0.02 V vs. Hg/Hg2SO4 electrode from the Koutecky-Levich plots was 9 times higher and the apparent activation energy during single cell evaluation was 27 kJ/mol lower for the MoOx promoted system, compared to the system without the additive. A higher operating temperature significantly favored the cell performance by a combined effect of enhancement in proton conductivity of the PBI membrane and possible kinetic benefit by the well postulated oxygen spill over effect by the MoOx type systems in some combinations involving such systems.  相似文献   

20.
J. Jiang 《Electrochimica acta》2005,50(24):4778-4783
Samples of the layered cathode materials, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/12, 1/4, 5/12, and 1/2), were synthesized at 900 °C. Electrodes of these samples were charged in Li-ion coin cells to remove lithium. The charged electrode materials were rinsed to remove the electrolyte salt and then added, along with EC/DEC solvent or 1 M LiPF6 EC/DEC, to stainless steel accelerating rate calorimetry (ARC) sample holders that were then welded closed. The reactivity of the samples with electrolyte was probed at two states of charge. First, for samples charged to near 4.45 V and second, for samples charged to 4.8 V, corresponding to removal of all mobile lithium from the samples and also concomitant release of oxygen in a plateau near 4.5 V. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples with x = 1/4, 5/12 and 1/2 charged to 4.45 V do not react appreciably till 190 °C in EC/DEC. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples charged to 4.8 V versus Li, across the oxygen release plateau, start to significantly react with EC/DEC at about 130 °C. However, their high reactivity is similar to that of Li0.5CoO2 (4.2 V) with 1 μm particle size. Therefore, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples showing specific capacity of up to 225 mAh/g may be acceptable for replacing LiCoO2 (145 mAh/g to 4.2 V) from a safety point of view, if their particle size is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号