首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The performances of the Ti-Pt/β-PbO2 and boron-doped diamond (BDD) electrodes in the electrooxidation of simulated wastewaters containing 85 mg L−1 of the Reactive Orange 16 dye were investigated using a filter-press reactor. The electrolyses were carried out at the flow rate of 7 L min−1, at different current densities (10-70 mA cm−2), and in the absence or presence of chloride ions (10-70 mM NaCl). In the absence of NaCl, total decolourisation of the simulated dye wastewater was attained independently of the electrode used. However, the performance of the BDD electrode was better than that of the Ti-Pt/β-PbO2 electrode; the total decolourisations were achieved by applying only 1.0 A h L−1 and 2.0 A h L−1, respectively. In the presence of NaCl, with the electrogeneration of active chlorine, the times needed for total colour removal were markedly decreased; the addition of 50 mM Cl or 35 mM Cl (for Ti-Pt/β-PbO2 or BDD, respectively) to the supporting electrolyte led to a 90% decrease of these times (at 50 mA cm−2). On the other hand, total mineralization of the dye in the presence of NaCl was attained only when using the BDD electrode (for 1.0 A h L−1); for the Ti-Pt/β-PbO2 electrode, a maximum mineralization of 85% was attained (for 2.0 A h L−1). For total decolourisation of the simulated dye wastewater, the energy consumption per unit mass of dye oxidized was only 4.4 kWh kg−1 or 1.9 kWh kg−1 using the Ti-Pt/β-PbO2 or BDD electrode, respectively. Clearly the BDD electrode proved to be the best anode for the electrooxidative degradation of the dye, either in the presence or absence of chloride ions.  相似文献   

2.
Electrochemical degradation of aqueous solutions containing 17β-estradiol (E2), concentrations range of 250-750 μg dm−3, has been extensively studied using boron-doped diamond (BDD) anode with a working solution volume of 250 ml under galvanostatic control. Cyclic voltammetric experiments were performed to examine the redox response of E2 as a function of cycle number. The effect of operating variables such as initial concentration of E2, applied current density, supporting medium (Na2SO4, NaNO3, and NaCl) and initial pH of the electrolyte (pH 2-10) were systematically examined and discussed. Electrolysis at high anodic potential causes complex oxidation of E2 that leads to form the final sole product as CO2. A pseudo first-order kinetics for E2 decay was found against varying applied current density. Also, kinetic analysis suggests that electrooxidation reaction of E2 undergo the control of applied current density. It was observed that electrolyte pH and supporting medium have a vital role on E2 degradation. From a comparison study with other anode materials such as platinum (Pt) and glassy carbon (GC), the superiority of the BDD anode was proved. Total organic carbon results have shown that almost complete mineralization could be accomplished at higher applied current density with specific electrical charge 22.5 × 10−2 A h dm−3. Mineralization current efficiency was comparatively lower with increasing applied current density.  相似文献   

3.
Electrochemical degradation of biocide compound, isothiazolin-3-ones, was studied in aqueous medium, with Na2SO4 supporting electrolyte using boron-doped diamond (BDD) anode. The redox response of isothiazolin-3-ones at BDD was examined by cyclic voltammetric study. The degradation of isothiazolin-3-ones and its mineralization trend were monitored by UV–vis spectrophotometric method and total organic carbon (TOC) analyzer, respectively. The effect of operating parameters such as applied current density, biocide concentration, electrolyte pH and nature of supporting electrolytes (Na2SO4, NaNO3 and NaCl) on degradation rate was studied in detail. It was established that the hydroxyl radicals (OH) generated at BDD surface were responsible for the degradation and the mineralization of the biocide contaminant. The rate of degradation was almost independent of electrolyte pH but became faster as the applied current density increased and the biocide concentration decreased. The kinetic studies revealed that the biocide decay follows a pseudo-first-order rate. The apparent rate constant for the oxidation of isothiazolin-3-ones was determined to be 2.65 × 10 4 s 1 at an applied current density of 25 mA cm 2 in the presence of 0.1 mol dm 3 Na2SO4 at pH 6.0. A poor mineralization efficiency was observed in the case of NaCl as supporting electrolyte which cause in-situ generation of chlorine based mediated oxidants such as Cl2 and OCl which have negligible influence in mineralizing the isothiazolin-3-ones compared to peroxodisulfate (S2O82 ) oxidants that formed in the case of Na2SO4. The oxidizing ability of the BDD anode was compared with those of Pt and glassy carbon anodes under similar experimental conditions.  相似文献   

4.
The electro-Fenton (EF) and photoelectro-Fenton (PEF) degradation of solutions of the beta-blocker propranolol hydrochloride with 0.5 mmol dm−3 Fe2+ at pH 3.0 has been studied using a single cell with a boron-doped diamond (BDD) anode and an air diffusion cathode (ADE) for H2O2 electrogeneration and a combined cell containing the above BDD/ADE pair coupled in parallel to a Pt/carbon felt (CF) cell. This naphthalene derivative can be mineralized by both methods with a BDD anode. Almost overall mineralization is attained for the PEF treatments, more rapidly with the combined system due to the generation of higher amounts of hydroxyl radical from Fenton's reaction by the continuous Fe2+ regeneration at the CF cathode, accelerating the oxidation of organics to Fe(III)-carboxylate complexes that are more quickly photolyzed by UVA light. The homologous EF processes are less potent giving partial mineralization. The effect of current density, pH and Fe2+ and drug concentrations on the oxidation power of PEF process in combined cell is examined. Propranolol decay follows a pseudo first-order reaction in most cases. Aromatic intermediates such as 1-naphthol and phthalic acid and generated carboxylic acids such as maleic, formic, oxalic and oxamic are detected and quantified by high-performance liquid chromatography. The chloride ions present in the starting solution are slowly oxidized at the BDD anode. In PEF treatments, all initial N of propranolol is completely transformed into inorganic ions, with predominance of NH4+ over NO3 ion.  相似文献   

5.
The electrochemical oxidation of Ibuprofen (Ibu) was performed using a Ti/Pt/PbO2 electrode as the anode, prepared according to literature, and a boron doped diamond (BDD) electrode, commercially available at Adamant Technologies. Tests were performed with model solutions of Ibu, with concentrations ranging from 0.22 to 1.75 mM for the Ti/Pt/PbO2 electrode and 1.75 mM for the BDD electrode, using 0.035 M Na2SO4 as the electrolyte, in a batch cell, at different current densities (10, 20 and 30 mA cm−2). Absorbance measurements, Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) tests were conducted for all samples. The results have shown a very good degradation of Ibu, with COD removals between 60 and 95% and TOC removals varying from 48 to 92%, in 6 h experiments, with higher values obtained with the BDD electrode. General Current Efficiency and Mineralization Current Efficiency, determined for both electrodes, show a similar behaviour for 20 mA cm−2 but a very different one at 30 mA cm−2. The combustion efficiency was also determined for both anodes, and found to be slightly higher with BDD at lower current density and equal to 100% for both anodes at 30 mA cm−2.  相似文献   

6.
Scale-up of boron-doped diamond (BDD) anode system is critical to the practical application of electrochemical oxidation in bio-refractory organic wastewater treatment. In this study, the scale-up of BDD anode system was investigated on batch-mode electrochemical oxidation of phenol simulated wastewater. It was demonstrated that BDD anode system was successfully scaled up by 121 times without performance deterioration based on the COD and specific energy consumption (Esp) models in bath mode. The COD removal rate and Esp for the scaled-up BDD anode system through enlarging the total anode area while keeping similar configuration, remained at the similar level as those before being scaled up, under the same area/volume value, current density, retention time and wastewater characteristics. The COD and Esp models used to describe the smaller BDD anode system satisfactorily predicted the performance of the scaled-up BDD anode system. Under the suitable operating conditions, the COD of phenol simulated wastewater was reduced from 540 mg l−1 to 130 mg l−1 within 3 h with an Esp of only 34.76 kWh m−3 in the scaled-up BDD anode system. These results demonstrate that BDD anode system is very promising in practical bio-refractory organic wastewater treatment.  相似文献   

7.
BACKGROUND: Endocrine disruptors, as in the case of bisphenol A (BPA), are increasingly found in aqueous effluents. The degree of mineralization of a bisphenol A (BPA) aqueous solution after applying several oxidation treatments has been investigated. RESULTS: UV‐C photolysis of BPA allowed calculation of the quantum yield, ϕλ=254 = 0.045 ± 0.005 mol Einstein−1 but only 15% of the initial organic carbon content (TOC) was eliminated. Better results (80% conversion) were obtained after TiO2 addition. Ozone inmediately reacts with BPA. Again, TiO2 addition in the presence of O3 was capable of increasing the mineralization level (60%). The photolytic ozonation of BPA was capable of completely eliminating TOC. The presence of activated carbon in the O3/UV and O3/UV/TiO2 systems significantly enhanced the TOC removal reaction rate (100% conversion in 20 min). CONCLUSIONS: Processes such as ozonation or photolysis are capable of efficiently removing BPA from water however, mineralization levels are rather low. Addition of TiO2 to O3 or UV‐C significantly enhances TOC removal. The remaining organics still account for an average 20–40% of the initial organic carbon. The combination of O3/UV‐C is capable of completely mineralizing BPA. Activated carbon and/or TiO2 addition to the system O3/UV‐C improves the TOC depletion rate. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
Electrochemical disinfection in chloride-free electrolyte has attracted more and more attention due to advantages of no production of disinfection byproducts (DBPs), and boron-doped diamond (BDD) anode with several unique properties has shown great potential in this field. In this study, inactivation of Escherichia coli (E. coli) was investigated in Na2SO4 electrolyte using BDD anode. Firstly, disinfection tests were carried on at different current density. The inactivation rate of E. coli and also the concentration of hydroxyl radical (OH) increased with the current density, which indicated the major role of OH in the disinfection process. At 20 mA cm−2 the energy consumption was the lowest to reach an equal inactivation. Moreover, it was found that inactivation rate of E. coli rose with the increasing Na2SO4 concentration and they were inactivated more faster in Na2SO4 than in NaH2PO4 or NaNO3 electrolyte even in the presence of OH scavenger, which could be attributed to the oxidants produced in the electrolysis of SO42−, such as peroxodisulfate (S2O82−). And the role of S2O82− was proved in the disinfection experiments. These results demonstrated that, besides hydroxyl radical and its consecutive products, oxidants produced in SO42− electrolysis at BDD anode played a role in electrochemical disinfection in Na2SO4 electrolyte.  相似文献   

9.
Boron-doped diamond (BDD) electrodes are promising anode materials in electrochemical treatment of wastewaters containing bio-refractory organic compounds due to their strong oxidation capability and remarkable corrosion stability. In order to further improve the performance of BDD anode system, electrochemical degradation of p-nitrophenol were initially investigated at the BDD anode in the presence of zero-valent iron (ZVI). The results showed that under acidic condition, the performance of BDD anode system containing zero-valent iron (BDD-ZVI system) could be improved with the joint actions of electrochemical oxidation at the BDD anode (39.1%), Fenton's reaction (28.5%), oxidation–reduction at zero-valent iron (17.8%) and coagulation of iron hydroxides (14.6%). Moreover, it was found that under alkaline condition the performance of BDD-ZVI system was significantly enhanced, mainly due to the accelerated release of Fe(II) ions from ZVI and the enhanced oxidation of Fe(II) ions. The dissolved oxygen concentration was significantly reduced by reduction at the cathode, and consequently zero-valent iron corroded to Fe(II) ions in anaerobic highly alkaline environments. Furthermore, the oxidation of released Fe(II) ions to Fe(III) ions and high-valent iron species (e.g., FeO2+, FeO42−) was enhanced by direct electrochemical oxidation at BDD anode.  相似文献   

10.
Multinegatively charged metal complex, hexacyanoferrate ([Fe(CN)6]4−), was electrostatically trapped in the cationic polymer film of N,N-dimethylaniline (PDMA) which was electrochemically deposited on the boron-doped diamond (BDD) electrode by controlled-potential electro-oxidation of the monomer. This ferrocyanide-trapped PDMA film was used to catalyze the oxidation of ascorbic acid (AA). Increase in the oxidation current response with a negative shift of the anodic peak potential was observed at the cationic PDMA film-coated BDD (PDMA|BDD) electrode, compared with that at the bare BDD electrode. A more drastic enhancement in the oxidation peak current as well as more negative shift of oxidation potential was found at the ferrocyanide-trapped PDMA film-coated BDD ([Fe(CN)6]3−/4−|PDMA|BDD) electrode. This [Fe(CN)6]3−/4−|PDMA|BDD electrode can be used as an amperometric sensor of AA. Ferrocyanide, electrostatically trapped in the polymer film shows more electrocatalytic activity than that coordinatively attached to the polymer film or dissolved in the solution phase. The electrocatalytic current depends on the surface coverage of ferricyanide, ΓFe, within the polymer film. Diffusion coefficient (D) of AA in the solution was estimated by rotating disk electrode voltammetry: D = (5.8 ± 0.3) × 10−6 cm2 s−1. The second-order rate constant for the catalytic oxidation of AA by ferricyanide was also estimated to be 9.0 × 104 M−1 s−1. In the hydrodynamic amperometry using the [Fe(CN)6]3−/4−|PDMA|BDD electrode, a successive addition of 1 μM AA caused the successive increase in current response with equal amplitude and the sensitivity was calculated as 0.233 μA cm−2 μM−1.  相似文献   

11.
Solutions of the veterinary fluoroquinolone antibiotic enrofloxacin in 0.05 M Na2SO4 of pH 3.0 have been comparatively degraded by electrochemical advanced oxidation processes such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) at constant current density. The study has been performed using an undivided stirred tank reactor of 100 ml and a batch recirculation flow plant of 2.5 l with an undivided filter-press cell coupled to a solar photoreactor, both equipped with a Pt or boron-doped diamond (BDD) anode and a carbon-polytetrafluoroethylene gas diffusion cathode to generate H2O2 from O2 reduction. In EF, PEF and SPEF, hydroxyl radical (OH) is formed from Fenton's reaction between added catalytic Fe2+ and generated H2O2. Almost total decontamination of enrofloxacin solutions is achieved in the stirred tank reactor by SPEF with BDD. The use of the batch recirculation flow plant showed that this process is the most efficient and can be viable for industrial application, becoming more economic and yielding higher mineralization degree with raising antibiotic content. This is feasible because organics are quickly oxidized with OH formed from Fenton's reaction and at BDD from water oxidation, combined with the fast photolysis of complexes of Fe(III) with generated carboxylic acids under solar irradiation. The lower intensity of UVA irradiation used in PEF with BDD causes a slower degradation. EF with BDD is less efficient since OH cannot destroy the most persistent Fe(III)-oxalate and Fe(III)-oxamate complexes. AO-H2O2 with BDD yields the poorest mineralization because pollutants are only removed with OH generated at BDD. All procedures are less potent using Pt as anode due to the lower production of OH at its surface. Enrofloxacin decay always follows a pseudo first-order reaction. Its primary aromatic by-products and short intermediates including polyols, ketones, carboxylic acids and N-derivatives are detected by GC-MS and chromatographic techniques. The evolution of F, NO3 and NH4+ ions released to the medium during each process is also determined.  相似文献   

12.
This study investigated the electrochemical incineration of bromophenol blue (BPB) at boron-doped diamond (BDD) anode. The individual and interaction effects of three control parameters (applied current density, flow rate and supporting electrolyte concentration) on process efficiency were estimated by central composite rotatable design. Among the independent variables, supporting electrolyte concentration displayed the most interesting roles on BPB degradation. The optimal conditions obtained by response surface methodology were: applied current density of 7.36 mA cm 2, 2.6 mM Na2SO4 and flow rate of 568 ml min 1, which gave a decolorization rate of 91.7% and a mineralization rate of 47.3%, as well as an energy consumption of 3518.89 kWh kg 1 TOC (7.0 kWh m 3) and a mineralization current efficiency of 15.1% at 120 min of electrolysis. The results presented here demonstrated the high efficiency of BDD technology in mineralizing BPB under mild conditions, as well as the usefulness and capability of the experimental design strategy for successful investigation and modeling of the electrocatalytic processes.  相似文献   

13.
Poly(ethylene oxide) (PEO)/2,6-bis (N-pyrazolyl) pyridine (BNPP) polymer electrolyte based photoelectrochemical cells have been fabricated with [cis-dithiocyanato-N, N-bis (2,2′ bipyridyl-4, 4′ dicarboxylic acid)ruthenium(II)] dihydrate (N3 dye) dye complex as the sensitizer and nanoporous TiO2 film as photo anode. The introduction of 2,6-bis (N-pyrazolyl) pyridine into the poly (ethylene oxide) matrix reduces the crystallinity of the polymer and enhances the mobility of I/I3 redox couple resulting in an improved performance with a higher conversion efficiency of 8.8% in terms of light energy to electric energy when compared to that of the corresponding dye-sensitized nanocrystalline TiO2 solar cell.  相似文献   

14.
On April 30, 2014, the World Health Organization’s first global report on the presence of antibiotics in waters focused on their negative consequences, which may include the growth of microorganisms with antimicrobial resistance. The β-lactam antibiotic amoxicillin (AMX) is widely used in human and veterinary medicine, and it has been recently detected in sewage treatment plants and effluents. In this paper, the degradation of acidic aqueous solutions of AMX by electro-Fenton process has been studied at constant current. Experiments have been performed in an undivided cell equipped with a carbon-felt cathode and a Pt or boron-doped diamond (BDD) anode. In such systems, the organic molecules are mainly oxidized by hydroxyl radical (?OH) simultaneously formed on the anode surface from water oxidation as well as in the bulk from Fenton’s reaction between Fe2+ catalyst and electrogenerated H2O2. The decay and mineralization of AMX was monitored by means of high performance liquid chromatography (HPLC) and TOC measurements. The evolution of the concentration of the final aliphatic carboxylic acids and inorganic ions like ammonium, nitrate and sulfate was assessed by HPLC and ion chromatography, respectively. The effect of the anode material, initial AMX concentration and current density was thoroughly studied. The AMX decay always followed a pseudo-first-order kinetics using either Pt or BDD, and the apparent rate constant increased with applied current. A quicker mineralization was reached with BDD because of the larger production of active ?OH. The absolute rate constant between hydroxyl radical and AMX determined by the competition kinetics method using p-hydroxybenzoic acid as the reference compound was found to be (2.02 ± 0.01) × 109 M?1 s?1.  相似文献   

15.
The electrochemical oxidation of chloranilic acid (CAA) has been studied in acidic media at Pb/PbO2, boron-doped diamond (Si/BDD) and Ti/IrO2 electrodes by bulk electrolysis experiments under galvanostatic control. The obtained results have clearly shown that the electrode material is an important parameter for the optimization of such processes, deciding of their mechanism and of the oxidation products. It has been observed that the oxidation of CAA generates several intermediates eventually leading to its complete mineralization. Different current efficiencies were obtained at Pb/PbO2 and BDD, depending on the applied current density in the range from 6.3 to 50 mA cm−2. Also the effect of the temperature on Pb/PbO2 and BDD electrodes was studied.UV spectrometric measurements were carried out at all anodic materials, with applied current density of 25 and 50 mA cm−2. These results showed a faster CAA elimination at the BDD electrode. Finally, a mechanism for the electrochemical oxidation of CAA has been proposed according to the results obtained with the HPLC technique.  相似文献   

16.
The degradation of herbicides 4-chlorophenoxyacetic acid (4-CPA), 4-chloro-2-methylphenoxyacetic acid (MCPA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) in aqueous medium of pH 3.0 has been comparatively studied by anodic oxidation and electro-Fenton using a boron-doped diamond (BDD) anode. All solutions are totally mineralized by electro-Fenton, even at low current, being the process more efficient with 1 mM Fe2+ as catalyst. This is due to the production of large amounts of oxidant hydroxyl radical (OH) on the BDD surface by water oxidation and from Fenton’s reaction between added Fe2+ and H2O2 electrogenerated at the O2-diffusion cathode. The herbicide solutions are also completely depolluted by anodic oxidation. Although a quicker degradation is found at the first stages of electro-Fenton, similar times are required for achieving overall mineralization in both methods. The decay kinetics of all herbicides always follows a pseudo first-order reaction. Reversed-phase chromatography allows detecting 4-chlorophenol, 4-chloro-o-cresol, 2,4-dichlorophenol and 2,4,5-trichlorophenol as primary aromatic intermediates of 4-CPA, MCPA, 2,4-D and 2,4,5-T, respectively. Dechlorination of these products gives Cl, which is slowly oxidized on BDD. Ion-exclusion chromatography reveals the presence of persistent oxalic acid in electro-Fenton by formation of Fe3+-oxalato complexes, which are slowly destroyed by OH adsorbed on BDD. In anodic oxidation, oxalic acid is mineralized practically at the same rate as generated.  相似文献   

17.
Electrochemical studies were carried out to estimate the risks of perchlorate formation in drinking water disinfected by direct electrolysis. Boron Doped Diamond (BDD) anodes were used in laboratory and commercially available cells at 20 °C. The current density was changed between 50 and 500 A m−2. For comparison, other anode materials such as platinum and mixed oxide were also tested. It was found that BDD anodes have a thousandfold higher perchlorate formation potential compared with the other electrode materials that were tested. In long-term discontinuous experiments all the chloride finally reacted to form perchlorate. The same result was obtained when probable oxychlorine intermediates (OCl, ClO2, ClO3) were electrolysed in synthetic waters in the ppm range of concentrations. The tendency to form perchlorate was confirmed when the flow rate of drinking water was varied between 100 and 300 L h−1 and the temperature increased to 30 °C. In a continuous flow mode of operation a higher chloride concentration in the water resulted in a lower perchlorate formation. This can be explained by reaction competition of species near and on the anode surface for experiments both with synthetic and local drinking waters. It is concluded that the use of electrodes producing highly reactive species must be more carefully controlled in hygienically and environmentally oriented applications.  相似文献   

18.
The effect of boron doped diamond (BDD) surface termination, immediately after cathodic and anodic electrochemical pre-treatments, on the electrochemical response of a BDD electrode in aqueous media and the influence of the different supporting electrolytes utilized in these pre-treatments on the final surface termination was investigated with [Fe(CN)6]4−/3−, as redox probe, by cyclic and differential pulse voltammetry and electrochemical impedance spectroscopy. The cyclic voltammetry results indicate that the electrochemical behavior for the redox couple [Fe(CN)6]4−/3− is very dependent on the state of the BDD surface, and a reversible response was observed after the cathodic electrochemical pre-treatment, whereas a quasi-reversible response occurred after anodic electrochemical pre-treatment. Differential pulse voltammetry in acetate buffer also showed that the potential window is very much influenced by the electrochemical pre-treatment of the BDD surface. Electroactivity of non-diamond carbon surface species (sp2 inclusions) incorporated into the diamond structure was observed after cathodic and anodic pre-treatments. Electrochemical impedance spectroscopy confirmed the cyclic voltammetry results and indicates that the BDD surface resistance and capacitance vary significantly with the electrolyte and with the electrochemical pre-treatment, caused by different surface terminations of the BDD electrode surface.  相似文献   

19.
BACKGROUND: Textile industries generate considerable amounts of waste‐water, which may contain strong colour, suspended particles, salts, high pH and high chemical oxygen demand (COD) concentration. The disposal of these coloured wastewaters poses a major problem for the industry as well as a threat to the environment. In this study, electrochemical oxidation of Basic Blue 3 (BB3) dye was studied in a bipolar trickle tower (BTT) reactor using Raschig ring shaped boron‐doped diamond (BDD) electrodes in recirculated batch mode. The effects of current density, temperature, flow rate, sodium sulfate concentration (Na2SO4) as supporting electrolyte, and initial dye concentration were investigated. RESULTS: The best experimental conditions obtained were as follows: current density 0.875 mA cm?2, temperature 30 °C, flow rate 109.5 mL min?1, Na2SO4 concentration 0.01 mol L?1. Under these conditions, 99% colour and 86.7% COD removal were achieved. Toxicity tests were also performed on BB3 solutions under the best experimental conditions. CONCLUSION: Based on these results, the BDD anode was found to be very successful for the simultaneous degradation of BB3 and removal of COD. Additional toxicity test results also showed that electrochemical treatment using a BDD Raschig ring anode in a BTT reactor is an effective way of reducing toxicity as well as removing colour and COD. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
The effects of low-frequency (40 kHz) ultrasound are investigated with regard to the effectiveness and mechanisms of electrochemical oxidation of p-substituted phenols (p-nitrophenol, p-hydroxybenzaldehyde, phenol, p-cresol, and p-methoxyphenol) at BDD (boron-doped diamond) and PbO2 anodes. Although ultrasound improved the disappearance rates of p-substituted phenols at both the BDD and PbO2 anodes, the degree of enhancement varied according to the type of p-substituted phenol and type of anode under consideration. At the BDD anode, the %Increase values were in the range 73-83% for p-substituted phenol disappearance and in the range 60-70% for COD removal. However, at the PbO2 anode, the corresponding %Increase values were in the range 50-70% for disappearance of p-substituted phenols and only 5-25% for COD removal, much lower values than obtained at the BDD anode. Further investigations on the influence of ultrasound on the electrochemical oxidation mechanisms at BDD and PbO2 anodes revealed that the different increase extent were due to the specialized electrochemical oxidation mechanisms at these two anodes. The hydroxyl radicals were mainly free at the BDD electrodes with a larger reaction zone, but adsorbed at the PbO2 electrodes with a smaller reaction zone. Therefore, the enhancement due to ultrasound was greater at the BDD anode than at the PbO2 anode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号