首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effect of a specific adsorption ion, copper (II) ion, on the kinetics of the charge transfer reaction at a LiMn2O4 thin film electrode/aqueous solution (1 mol dm−3 LiNO3) interface. The zeta potential of LiMn2O4 particles showed a negative value in 1 × 10−2 mol dm−3 LiNO3 aqueous solution, while it was measured as positive in the presence of 1 × 10−2 mol dm−3 Cu(NO3)2 in the solution. The presence of copper (II) ions in the solution increased the charge transfer resistance, and CV measurement revealed that the lithium insertion/extraction reaction was retarded by the presence of small amount of copper (II) ions. The activation energy for the charge transfer reaction in the solution with Cu(NO3)2 was estimated to be 35 kJ mol−1, which was ca. 10 kJ mol−1 larger than that observed in the solution without Cu(NO3)2. These results suggest that the interaction between the lithium ion and electrode surface is a factor in the kinetics of charge transfer reaction.  相似文献   

2.
Copper chloride modified copper (CCMC) electrode was prepared as a new electrode. For the preparation of the modified electrode, the polished copper electrode was placed in 0.1 M CuCl2 solution for 20 s. In this step, a layer of copper (I) chloride was formed at the surface of copper electrode. Then, the electrode was placed in 0.1 M NaOH and the electrode potential was cycled between −250 and 1000 mV (vs. SCE) at a scan rate of 50 mV s−1 for 5 cycles in a cyclic voltammetry regime until a featureless voltammogram was obtained. Surface physical characteristics of the modified electrode were studied by scanning electron micrographs (SEM). Results showed that considerable amounts of microcrystals have been formed on the copper surface during the modification. Surface elemental analysis of electrode were performed by energy dispersive X-ray (EDX) technique. The results showed that in addition to copper and chloride elements, there is also oxygen at the surface of CCMC electrode. This indicates that a layer of (ClCu)2O was formed at the surface of the modified electrode. The electrocatalytic activity of the modified electrode for the oxidation of methanol, in aqueous basic solution was studied by using cyclic voltammetry. Results showed that, copper chloride modified electrode can improve the activity of Cu towards the oxidation of this small organic molecule, showing the possibility of attaining good electrocatalytic anodes for fuel cells. The modified electrode shows a stable and linear response in the concentration range of 5 × 10−3 to 8 × 10−2 M with a correlation coefficient of 0.9958.  相似文献   

3.
Cyclic voltammetry was used to investigate the electrochemical behaviour of the tungsten oxide films toward the electroreduction of BrO3, ClO2 and NO2 ions in acidic medium. The effects of the temperature, scan rate, pH, chemical composition of the electrolytic solutions, were investigated and the reduction mechanism was critically discussed.The reduction currents, evaluated in cyclic voltammetry and measured at −0.250 V versus SCE, increased linearly on increasing analyte concentration up to 20, 55 and 45 mM for nitrite, chlorite and bromate ions, respectively. The detection limits, evaluated in cyclic voltammetry, were 0.1, 0.4 and 0.7 mM for BrO3, ClO2 and NO2, respectively.The tungsten oxide film was successfully characterized as an amperometric sensor for the analytical determination of BrO3, ClO2 and NO2 ions in flowing stream. Operating under constant applied potential of −0.3 V versus Ag/AgCl the good reproducibility of the peak height and background current level during consecutive injections, indicates the absence of fouling effects and the potential applicability of the amperometric sensor for the routine analytical determination of the investigated inorganic ions. Considering the low values of the background currents (ca. 1.1 ± 0.1 μA) obtained in acidic and not deoxygenated carrier electrolyte, the tungsten sensing electrode seems to compete favourably with other common sensors for the amperometric determination of electroactive molecules under cathodic conditions.The X-ray photoelectron spectroscopy technique (XPS) was used in order to evaluate the chemical composition of the tungsten film upon electrochemical treatment in 0.1 M H2SO4 solution. Independently of the electrochemical treatment in acid solution, the tungsten surface electrode is generally composed by 50-60% of W0, 35-40% of W6+ and traces of W2+ oxide species.  相似文献   

4.
To achieve a high-energy-density lithium electrode, high-density LiFePO4/C composite cathode material for a lithium-ion battery was synthesized using self-produced high-density FePO4 as a precursor, glucose as a C source, and Li2CO3 as a Li source, in a pipe furnace under an atmosphere of 5% H2-95% N2. The structure of the synthesized material was analyzed and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The electrochemical properties of the synthesized LiFePO4/carbon composite were investigated by cyclic voltammetry (CV) and the charge/discharge process. The tap-density of the synthesized LiFePO4/carbon composite powder with a carbon content of 7% reached 1.80 g m−3. The charge/discharge tests show that the cathode material has initial charge/discharge capacities of 190.5 and 167.0 mAh g−1, respectively, with a volume capacity of 300.6 mAh cm−3, at a 0.1C rate. At a rate of 5C, the LiFePO4/carbon composite shows a high discharge capacity of 98.3 mAh g−1 and a volume capacity of 176.94 mAh cm−3.  相似文献   

5.
Platinum particles were electrochemically deposited over glassy carbon (GC) to prepare GC-Pt electrodes. The electrocatalytic behaviors of this electrode have been compared with that of an ordinary polycrystalline(OPC) Pt and GC electrode in reducing NO2 at neutral medium. The as prepared GC-Pt electrode reduced NO2, exhibiting double-peak reduction waves. The reduction performance of this electrode was noticed at least 7.8 times higher than that of an OPC Pt electrode. The sensitivity of the GC-Pt electrode was found to be enhanced by the temperature rise. A consecutive mechanism, NO2 → NO → NH4+, over the as prepared GC-Pt electrode has been investigated.  相似文献   

6.
We have studied the preparation of Cu2O films by copper anodization in a 0.1 M NaOH electrolyte. We identified the potential range at which Cu+ dissolution takes place then we prepared films with different times of exposure to this potential. The morphology, crystalline structure, band gap, Urbach energy and thickness of the films were studied. Films prepared with the electrode unexposed to the dissolution potential have a pyramidal growth typical of potential driven processes, while samples prepared at increasing exposure times to dissolution potential present continuous nucleation, growth and grain coalescence. We observed a discrepancy in the respective film thicknesses calculated by coulometry, atomic force microscopy and optical reflectance. We propose that anodic Cu2O film formation involves three parallel mechanisms (i) Cu2O nucleation at the surface, (ii) Cu+ dissolution followed by heterogeneous nucleation and (iii) Cu+ and OH diffusion through the forming oxide and subsequent reaction in the solid state.  相似文献   

7.
Copper oxide (CuO)/copper oxalate (CuOx) modified non-enzymatic electrochemical sensor for the detection of glucose in alkaline medium was fabricated by electrochemical anodisation of copper electrodes in potassium oxalate solution. Morphology of the modified copper electrode was studied by Scanning Electron Microscopy (SEM) and its electrochemical behaviour by Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). The formation of CuOx on the copper electrode was confirmed by the Infra-red Reflection Absorption Spectrum (IRRAS). The modified electrodes were found to be microporous and rough. Linear Sweep Voltammetry (LSV) and amperometry were adopted to investigate the direct electrocatalytic oxidation of glucose on CuO/CuOx modified electrode in alkaline medium which showed excellent catalytic activity. The best performance of the sensor was obtained at 0.7 V and in 0.1 M sodium hydroxide (NaOH). At this optimum potential, the sensor was highly selective to glucose in the presence of ascorbic acid (AA) and uric acid (UA) which are common interfering species in biological fluids. The sensitivity was found to be very high (1890 μA mM−1 cm−2) with excellent linearity (R = 0.9999) up to 15 mM having a low detection limit of 0.05 μM (S/N = 3). The modified electrode was tested for glucose level in blood serum. Based on the optimised conditions, a working model of the sensor was made and successfully tested for glucose.  相似文献   

8.
The electrochemical preparation described herein involved the electrocatalytic oxidation of sulfite on a platinum electrode modified with nanostructured copper salen (salen = N,N′-ethylenebis(salicylideneiminato)) polymer films. The complex was prepared and electropolymerized at a platinum electrode in a 0.1 mol L−1 solution of tetrabutylammonium perchlorate in acetonitrile by cyclic voltammetry between 0 and 1.4 V vs. SCE. After cycling the modified electrode in a 0.50 mol L−1 KCl solution, the estimated surface concentration was found to be equal to 2.2 × 10−9 mol cm−2. This is a typical behavior of an electrode surface immobilized with a redox couple that can usually be considered as a reversible single-electron reduction/oxidation of the copper(II)/copper(III) couple. The potential peaks of the modified electrode in the electrolyte solution (aqueous) containing the different anions increase with the decrease of the ionic radius, demonstrating that the counter-ions influence the voltammetric behavior of the sensor. The potential peak was found to be linearly dependent upon the ratio [ionic charge]/[ionic radius]. The oxidation of the sulfite anion was performed at the platinum electrode at +0.9 V vs. SCE. However, a significant decrease in the overpotential (+0.45 V) was obtained while using the sensor, which minimized the effect of oxidizable interferences. A plot of the anodic current vs. the sulfite concentration for chronoamperometry (potential fixed = +0.45 V) at the sensor was linear in the 4.0 × 10−6 to 6.9 × 10−5 mol L−1 concentration range and the concentration limit was 1.2 × 10−6 mol L−1. The reaction order with respect to sulfite was determined by the slope of the logarithm of the current vs. the logarithm of the sulfite concentration.  相似文献   

9.
A ternary composite of CNT/polypyrrole/hydrous MnO2 is prepared by in situ chemical method and its electrochemical performance is evaluated by using cyclic voltammetry (CV), impedance measurement and constant-current charge/discharge cycling techniques. For comparative purpose, binary composites such as CNT/hydrous MnO2 and polypyrrole/hydrous MnO2 are prepared and also investigated for their physical and electrochemical performances. The specific capacitance (SC) values of the ternary composite, CNT/hydrous MnO2 and polypyrrole/hydrous MnO2 binary composites estimated by CV technique in 1.0 M Na2SO4 electrolyte are 281, 150 and 35 F g−1 at 20 mV s−1 and 209, 75 and 7 F g−1 at 200 mV s−1, respectively. The electrochemical stability of ternary composite electrode is investigated by switching the electrode back and forth for 10,000 times between 0.1 and 0.9 V versus Ag/AgCl at 100 mV s−1. The electrode exhibits good cycling stability, retaining up to 88% of its initial charge at 10,000th cycle. A full cell assembled with the ternary composite electrodes shows a SC value of 149 F g−1 at a current loading of 1.0 mA cm−2 during initial cycling, which decreased drastically to a value of 35 F g−1 at 2000th cycle. Analytical techniques such as scanning electron microscopy (SEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmet-Teller (BET) surface area measurement and inductively coupled plasma-atomic emission spectrometry (ICP-AES) are also used to characterize the composite materials.  相似文献   

10.
M. Reffass 《Electrochimica acta》2007,52(27):7599-7606
Pitting corrosion of carbon steel electrodes in 0.1 mol L−1 NaHCO3 + 0.02 mol L−1 NaCl solutions was induced by anodic polarisation. The evolution of the breakdown potential Eb with NO2 concentration was investigated by linear voltammetry. Eb increased from −15 ± 5 mV/SCE for [NO2] = 0 up to 400 ± 50 mV/SCE for [NO2] = 0.1 mol L−1. During anodic polarisation at potentials comprised between Eb([NO2] = 0) and Eb([NO2] ≠ 0), the behaviour of the whole electrode surface, followed by chronoamperometry, was compared to the behaviour of one single pit, followed via scanning vibrating electrode technique (SVET). Addition of a NaNO2 solution after the beginning of the polarisation led to a rapid repassivation of pre-existing well-grown pits. In situ micro-Raman spectroscopy was then used to identify the corrosion products forming inside the pits. The first species to be detected in the presence of NO2 were mainly dissolved Fe(III) species, more likely [FeIII(H2O)6]3+ complexes. Iron(II) carbonate FeCO3, siderite, and carbonated green rust GR(CO32−) were also detected in the active pits, as in the absence of nitrite. But they were accompanied by maghemite γ-Fe2O3, a phase structurally similar to the passive film, that forms from the Fe(III) complexes. The Raman analyses then correlate with the SVET observations and confirm that the main effect of nitrite ions is to oxidize iron(II) into iron(III). The passive film would then form from the Fe(III) species still bound to the steel surface.  相似文献   

11.
A cetyltrimethyl ammonium bromide modified carbon paste electrode (CTAB/CPE) was developed in this work based on the surface modification method. The improved electrochemical response of K4Fe(CN)6 at this electrode indicated that CTAB could change the surface property of carbon paste electrodes (CPEs), which was demonstrated by the electrochemical impedance spectroscopy (EIS). In 0.1 mM [Fe(CN)6]3−/4−, a low exchange current (i0) of 2.72×10−7 A at bare CPE was observed while that at CTAB/CPE was 6.79×10−5 A. The effect of CTAB concentration on the electrode quality revealed that CTAB formed a compact monolayer on the electrode surface with high density of positive charges directed outside the electrode. This electrode showed strong accumulation ability toward Fe(CN)64− and can also accumulate Co(phen)32+ by the adsorption of the organic ligands in the hydrophobic area of the monolayer. The electrode was applied to the immobilization of DNA, which was characterized by the isotherm adsorption of Co(phen)32+.  相似文献   

12.
A novel electroactive material for ascorbic acid (AA) determination was successfully prepared by plating/potential cycling method. The cobalt film was first deposited on the surface of glassy carbon electrode (GCE) in CoSO4 solution by potential cycling, and then a cobalt film on the surface of GCE was activated by potential cycling in 0.1 mol L−1 NaOH. The electrochemical performance of the resulted film (Co/GCE) and factors affecting its electrochemical activity were investigated by cyclic voltammetry and amperometry. This film electrode exhibited good electrocatalytic activity to the oxidation of AA. This biosensor had a fast response of AA less than 3 s and excellent linear relationships were obtained in the concentration range of 3 × 10−7 to 1 × 10−4 mol L−1 with a detection limit of 2 × 10−7 mol L−1 (S/N = 3) under the optimum conditions. Moreover, the selectivity, stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

13.
Electrochemical behaviour of sandwich-type composite electrodes of polypyrrole (PPy) and CoFe2O4 nanoparticles (Ox) were investigated in an aqueous solution of 0.5 M K2SO4 and 5mM KOH at 25 °C using electrochemical impedance (EI), cyclic voltammetry (CV) and Tafel polarization techniques. EI and CV studies indicated that the incorporation of oxide nanoparticles influenced the charge transfer and transport behaviours of the polymer matrix greatly. The bulk electrical resistances of pure polymer (4.5 ± 1.7 Ω) as well as composite (2.7 ± 0.8 Ω) electrodes were practically constant in the potential region, +0.1 to −0.7 V. The latter electrode showed a good electrocatalytic activity towards the oxygen reduction reaction (ORR).  相似文献   

14.
Hui Xia  M.O. Lai 《Electrochimica acta》2009,54(25):5986-5991
Kinetic and transport parameters of Li ion during its extraction/insertion into thin film LiNi0.5Mn0.5O2 free of binder and conductive additive were provided in this work. LiNi0.5Mn0.5O2 thin film electrodes were grown on Au substrates by pulsed laser deposition (PLD) and post-annealed. The annealed films exhibit a pure layered phase with a high degree of crystallinity. Surface morphology and thin film thickness were investigated by field emission scanning electron microscopy (FESEM). The charge/discharge behavior and rate capability of the thin film electrodes were investigated on Li/LiNi0.5Mn0.5O2 cells at different current densities. The kinetics of Li diffusion in these thin film electrodes were investigated by cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT). CV was measured between 2.5 and 4.5 V at different scan rates from 0.1 to 2 mV/s. The apparent chemical diffusion coefficients of Li in the thin film electrode were calculated to be 3.13 × 10−13 cm2/s for Li intercalation and 7.44 × 10−14 cm2/s for Li deintercalation. The chemical diffusion coefficients of Li in the thin film electrode were determined to be in the range of 10−12-10−16 cm2/s at different cell potentials by GITT. It is found that the Li diffusivity is highly dependent on the cell potential.  相似文献   

15.
Qian Cheng 《Electrochimica acta》2010,55(27):8273-8279
Pt tetrahexahedral (Pt-THH) nanocrystals enclosed with 24 {h k 0} facets, Pt nanothorns (Pt-Thorn) with a high surface density of atomic steps, and congeries of Pt nanoparticles (Pt-NP) were prepared and served as catalysts to study the electrocatalytic reduction of both adsorbed and solution nitric oxide. The structure sensitivity for the reduction of a saturated NO adlayer on the Pt nanocrystals (NCs) of different shape was studied by cyclic voltammetry (CV) and in situ FTIR spectroscopy in sulphuric acid solutions. The results revealed that two types of NO adsorbates can be reduced independently at separated potentials, i.e. the reduction of linear bonded NO (NOL) on the Pt-NP electrode gives rise to a current peak at −0.01 V (vs. SCE), while the bridge adsorbed NO (NOB) yields a current peak at −0.08 V. The in situ SNIFTIRS results confirmed the assignment of NO adsorbates, i.e. the NOB species yielding a IR absorption bipolar band with its negative-going peak at 1636 cm−1 and positive-going peak around 1610 cm−1, and the NOL species giving rise to a bipolar band with its negative-going peak at 1809 cm−1 and positive-going peak around 1720 cm−1. It has determined that the NOL species can be preferentially formed on the Pt NCs with open surface structure, i.e. the more open the surface structure of the Pt NCs, the larger the relative quantity of NOL versus NOB. It has also revealed that the Pt NCs with a high surface density of atomic steps exhibit superior electrocatalytic activity for the reduction of solution NO species. The steady-state current density of NO reduction on Pt-THH NCs is 7.5-12 times as large as that on Pt-NP, and that on Pt-Thorn is 2.5-4 times of that on Pt-NP in the reduction potential region of electrochemical dynamic control.  相似文献   

16.
An electrochemical biosensor was constructed based on the immobilization of myoglobin (Mb) in a composite film of Nafion and hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) for a modified carbon paste electrode (CPE). Direct electrochemistry of Mb in the Nafion-BMIMPF6/CPE was achieved, confirmed by the appearance of a pair of well-defined redox peaks. The results indicate that Nafion-BMIMPF6 composite film provided a suitable microenvironment to realize direct electron transfer between Mb and the electrode. The cathodic and anodic peak potentials were located at −0.351 V and −0.263 V (vs. SCE), with the apparent formal potential (Ep) of −0.307 V, which was characteristic of Mb Fe(III)/Fe(II) redox couples. The electrochemical behavior of Mb in the composite film was a surface-controlled quasi-reversible electrode process with one electron transfer and one proton transportation when the scan rate was smaller than 200 mV/s. Mb-modified electrode showed excellent electrocatalytic activity towards the reduction of trichloroacetic acid (TCA) in a linear concentration range from 2.0 × 10−4 mol/L to 1.1 × 10−2 mol/L and with a detection limit of 1.6 × 10−5 mol/L (3σ). The proposed method would be valuable for the construction of a third-generation biosensor with cheap reagents and a simple procedure.  相似文献   

17.
The electrochemical reduction of 2-nitroimidazole in a non-aqueous medium using cyclic voltammetry (CV) at a mercury electrode was carried out.The 2-nitroimidazole derivative in DMF + 0.1 M tetra(n-butyl)ammonium hexafluorophosphate (TBAHFP6) resulted in the following dissociation equilibrium:
HNRNO2 ? NRNO2 + H+  相似文献   

18.
Sodium borohydride (NaBH4) is receiving increasing attention during the last decade regarding its possible application in energy systems. NaBH4 has the dual potential of generating hydrogen on demand or being directly oxidised in a direct borohydride fuel cell (DBFC). Progress on DBFCs relies on the development of systematic studies to allow a more comprehensive characterisation of the borohydride (BH4) oxidation process. In this paper, cyclic voltammetry (CV) is applied to study systematically the BH4 electrooxidation on a gold (Au) disc macroelectrode in 2 mol l−1 NaOH solutions. Voltammograms are obtained for various NaBH4 concentrations [0.03-0.12 mol l−1], working temperatures [25-65 °C], and potential scan rates [0.02-20 V s−1], over a wide potential range [−1.0-0.8 V vs. SCE]. Modelling of CV data indicates that BH4 oxidation on Au electrode follows a first irreversible electrochemical pathway via the direct BH4 oxidation reaction, involving nearly 8 mol of exchanged electrons per mole of BH4. A second pathway, at higher potentials, concerns a yet undetermined oxidation mechanism in the partially oxidised Au surface which, in a third pathway, is reactivated, allowing an electrochemical-adsorption mechanism to take place. Relevant parameters such as transfer coefficient, kinetic rate constant, standard rate constant, charge transfer activation energy, and number of exchanged electrons are estimated. The BH4 oxidation reaction on Au is found to be first order with respect to BH4.  相似文献   

19.
In this work, Ni(OH)2 nanoplates grown on the Cu substrate were synthesized and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Then a novel Cu-Ni(OH)2 modified glass carbon electrode (Cu-Ni(OH)2/GCE) was fabricated and evaluated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and typical amperometric response (i-t) method. Exhilaratingly, the Cu-Ni(OH)2/GCE shows significant electrocatalytic activity toward the reduction of H2O2. At an applied potential of −0.1 V, the sensor produces an ultrahigh sensitivity of 408.1 μA mM−1 with a low detection limit of 1.5 μM (S/N = 3). The response time of the proposed electrode was less than 5 s. What's more, the proposed sensor displays excellent selectivity, good stability, and satisfying repeatability.  相似文献   

20.
The direct electrochemistry of hemoglobin (Hb) has been achieved by immobilizing Hb on mesoporous Al2O3 (meso-Al2O3) film modified glassy carbon (GC) electrode. Meso-Al2O3 shows significant promotion to the direct electron-transfer of Hb, thus it exhibits a pair of well defined and quasi-reversible peaks with a formal potential of −0.345 V (vs. SCE). The electron-transfer rate constant (ks) is estimated to be 3.17 s−1. The immobilized Hb retains its biological activity well and shows high catalytic activity to the reduction of hydrogen peroxide (H2O2) and nitrite (NO2). Under the optimized experimental conditions, the catalytic currents are linear to the concentrations of H2O2 and NO2 in the ranges of 0.195-20.5 μM and 0.2-10 mM, respectively. The corresponding detection limits are 1.95 × 10−8 M and 3 × 10−5 M (S/N = 3). The resulting protein electrode has high thermal stability and good reproducibility due to the protection effect of meso-Al2O3. Ultraviolet visible (UV-vis) absorption spectra and reflection-absorption infrared (RAIR) spectra display that Hb keeps almost natural structure in the meso-Al2O3 film. The N2 adsorption-desorption experiments show that the pore size of meso-Al2O3 is about 14.4 nm, suiting for the encapsulation of Hb (average size: 5.5 nm) well. Therefore, meso-Al2O3 is an alternative matrix for protein immobilization and biosensor preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号