共查询到20条相似文献,搜索用时 0 毫秒
1.
The electrocatalytic activity of a Cu electrode for the electroreduction of nitrate in alkaline medium was investigated by linear sweep voltammetry at stationary and rotating disc electrodes. Nitrate-reduction products generated upon prolonged electrolyses at different potentials were quantified. In addition, adsorption phenomena associated with the nitrate electroreduction process were characterized by electrochemical quartz crystal microbalance (EQCM) experiments. This data revealed that nitrate electroreduction process strongly depends on the applied potential. Firstly, at ca. −0.9 V vs. Hg/HgO, the electroreduction of adsorbed nitrate anions to nitrite anions was identified as the rate-determining step of the nitrate electroreduction process. Between −0.9 and −1.1 V, nitrite is reduced to hydroxylamine. However, during long-term electrolyses, hydroxylamine is not detected and presumably because it is rapidly reduced to ammonia. At potential more negative than −1.1 V, nitrite is reduced to ammonia. At ca. −1.45 V, i.e. just before the hydrogen evolution reaction, the abrupt decrease of the cathodic current is due to the electrode poisoning by adsorbed hydrogen. In addition, during the first minutes of nitrate electrolysis, a decrease of the copper electrode activity was observed at the three investigated potentials (−0.9, −1.1 and −1.4 V). From polarization and EQCM measurements, this deactivation was attributed to the adsorption of nitrate-reduction products, blocking the electrode surface and slowing down the nitrate electroreduction rate. However, it was demonstrated that the Cu electrode can be reactivated by the periodic application of a square wave potential pulse at −0.5 V, which causes the desorption of poisoning species. 相似文献
2.
Ghasem Karim-Nezhad Behruz Zare DizajdiziParisa Seyed Dorraji 《Catalysis communications》2011,12(10):906-909
Copper bromide modified copper electrode was prepared and used to electrocatalytic oxidation of ethanol. Scanning electron microscopy and energy dispersive x-ray experiments suggested the formation of thin layer of copper bromide on the copper surface. The j0 for copper bromide modified copper and copper chloride modified copper electrodes are 9.8 and 5.7 folds respectively higher than for that of bare copper electrode. For copper bromide modified copper electrode, the charge transfer coefficient (α) and the number of electrons involved in the rate determining step (nα) were calculated as 0.44 and 1 respectively. 相似文献
3.
A comparative study has been made of the influence of an addition of Sn to Cu as the basic cathode material on the electrocatalytic
activity of the resulting material for nitrate (NO3−) reduction in a weakly alkaline medium. Potentiodynamic and chronoamperometric experiments were carried out in an electrolyte
simulating the solution from regeneration of an ion-exchange column for NO3− removal in drinking water treatment. A rotating ring-disk electrode was used for these experiments. An enhancement of the
electrocatalytic activity of Cu by alloying with Sn was observed only in the composition region up to 10 wt.% Sn. A further
increase in Sn content results in a rapid decline of the electrocatalytic activity caused by changes in the phase structure
of the alloy material. For the most active material potentiostatic batch electrolysis was carried out in a divided and an
undivided cell. The reduction products were determined. 相似文献
4.
The electrooxidation of some readily available disaccharides, i.e. trehalose, maltose, isomaltulose and cellobiose, was investigated in alkaline medium. The reaction products were identified and quantified using chromatographic and spectroscopic methods. Important conversion yields and high selectivities towards mono carboxylic acids of some of these disaccharides were obtained. The pH effect on the product distribution was also determined. 相似文献
5.
The electro-oxidation of methanol on copper in alkaline solutions has been studied by the methods of cyclic voltammetry, quasi-steady state polarization and chronoamperometry. It has been found that in the course of an anodic potential sweep the electro-oxidation of methanol follows the formation of CuIII and is catalysed by this species through a mediated electron transfer mechanism. The reaction also continues in the early stages of the reversed cycle until it is stopped by the prohibitively negative potentials. The process is diffusion controlled and the current-time responses follow Cottrellian behavior. The rate constants, turnover frequency, anodic transfer coefficient and the apparent activation energy of the electro-oxidation reaction are reported. 相似文献
6.
The electrochemical reduction of nitrate ions at a copper electrode in an unbuffered neutral aqueous solution is studied. Using a two compartment electrochemical cell, three stationary cathodic waves, noted P1, P2 and P3, were evidenced by cyclic voltammetry at −0.9, −1.2 and −1.3 V/SCE, respectively. By comparing the electrochemical response of nitrate and nitrite containing solutions, P1 was attributed to the reduction of nitrate to nitrite. In order to assign P2 and P3 features by determining the number of electrons involved at the corresponding potential, rotating disk electrode experiments at various rotation speeds, combined with linear sweep voltammetry, were performed. Current data analysis at a given potential was carried out using Koutecky-Levich treatment taking into account water reduction. Confident values of the diffusion coefficient D of nitrate ions were assessed by electrochemical impedance spectroscopy for nitrate concentrations of 10−3, 10−2 and 10−1 M. For a nitrate concentration of 10−2 M, D was found to be 1.31 × 10−5 cm2 s−1 allowing the number of electrons to be determined as 6 for P2 and 8 for P3, in accordance with nitrate reduction into hydroxylamine and ammonia, respectively. The formation of hydroxylamine was confirmed by the observation of its reoxidation at a Pt microelectrode present at the Cu electrode/nitrate solution interface. 相似文献
7.
Mohammad Mazloum Ardakani Payam Ebrahimi karami Hamid Reza Zare 《Electrochimica acta》2007,52(20):6118-6124
The electrocatalytic oxidation of hydrazine has been studied on glassy carbon modified by electrodeposition of quinizarine, using cyclic voltammetry and chronoamperometry techniques. It has been shown that the oxidation of hydrazine to nitrogen occurs at a potential where oxidation is not observed at the bare glassy carbon electrode. The apparent charge transfer rate constant and transfer coefficient for electron transfer between the electrode surface and immobilized quinizarine were calculated as 4.44 s−1 and 0.66, respectively. The heterogenous rate constant for oxidation of hydrazine at the quinizarine modified electrode surface was also determined and found to be about 4.83 × 103 M−1 s−1. The diffusion coefficient of hydrazine was also estimated as 1.1 × 10−6 cm2 s−1 for the experimental conditions, using chronoamperometry. 相似文献
8.
Copper chloride modified copper (CCMC) electrode was prepared as a new electrode. For the preparation of the modified electrode, the polished copper electrode was placed in 0.1 M CuCl2 solution for 20 s. In this step, a layer of copper (I) chloride was formed at the surface of copper electrode. Then, the electrode was placed in 0.1 M NaOH and the electrode potential was cycled between −250 and 1000 mV (vs. SCE) at a scan rate of 50 mV s−1 for 5 cycles in a cyclic voltammetry regime until a featureless voltammogram was obtained. Surface physical characteristics of the modified electrode were studied by scanning electron micrographs (SEM). Results showed that considerable amounts of microcrystals have been formed on the copper surface during the modification. Surface elemental analysis of electrode were performed by energy dispersive X-ray (EDX) technique. The results showed that in addition to copper and chloride elements, there is also oxygen at the surface of CCMC electrode. This indicates that a layer of (ClCu)2O was formed at the surface of the modified electrode. The electrocatalytic activity of the modified electrode for the oxidation of methanol, in aqueous basic solution was studied by using cyclic voltammetry. Results showed that, copper chloride modified electrode can improve the activity of Cu towards the oxidation of this small organic molecule, showing the possibility of attaining good electrocatalytic anodes for fuel cells. The modified electrode shows a stable and linear response in the concentration range of 5 × 10−3 to 8 × 10−2 M with a correlation coefficient of 0.9958. 相似文献
9.
In the present work we demonstrate the carbon paste as a new electrode substrate for the electropolymerization of 2-aminodiphenylamine and fabrication of polymer film modified electrode. Then transition metal of copper is incorporated into the polymer by electrodepositing of Cu(II) from CuCl2 acidic solution using potentiostatic technique. The electrocatalytic oxidation of methanol was studies by cyclic voltammetry and chronoamperometry methods at the surface of obtained Cu/P(2ADPA)/MCPE. It has been found that in the course of an anodic potential sweep, the electro-oxidation of methanol follows the formation of Cu(III) and is catalyzed by this species through a mediated electron transfer mechanism. The obtained current density for this catalytic oxidation is very high which could be come from high surface area of caused by the P(2ADPA) modification. The effects of various parameters such as the copper loading, scan rate and methanol concentration on the electrocatalytic oxidation of methanol were also investigated at the surface of Cu/P(2ADPA)/MCPE. Finally, using a chronoamperometric method, the catalytic rate constant (k) for methanol was found to be 0.2 × 105 cm3 mol−1 s−1 that the high k can be ascribed for the fast electron transfer process due to electrode modification. 相似文献
10.
The electrocatalytic reduction of hydrogen peroxide (H2O2) has been studied at nanostructured copper (Cunano) modified glassy carbon (GC/Cunano) electrode in phosphate buffer (pH 7.2). The electrical properties of GC/Cunano modified electrodes were studied by electrochemical impedance spectroscopy (EIS). Surface and electrochemical characterization
were carried out by using atomic force microscopy (AFM) and cyclic voltammetry. A well-defined H2O2 reduction signal, which is due to mediation of a surface active site redox transition exhibits at the GC/Cunano electrode. The Cunano is acting as a bridge without the aid of any other electron mediator, which enables the direct electron transfer between
the modified electrode and the substrate. The results are compared with bulk copper macroelectrode and emphasized the efficiency
of the Cunano modified electrode. Systematic investigations were made to optimize the experimental parameter, such as applied potential
(Eapp) for copper electrodeposition. The calibration curve obtained from chronoamperometric studies was found to be linear in the
range 0.5 to 8.0 μM H2O2 with a detection limit of ca.10 nM (S/N = 3) at the GC/Cunano electrode. The modified electrode is stable for 1 week in phosphate buffer after repetitive measurements. 相似文献
11.
Electrocatalytic reduction of furfural (2-furan-carboxaldehyde) has been investigated on copper electrode in N,N-dimethylformamide. The onset of the electron transfer process starts at around −0.80 V (SCE). Linear correlation has been found between the cathodic current peak (jP) and furfural concentration. The influence of the incidence of light on the charge transfer process is also discussed. Spectroscopic evidences obtained by NMR indicate that the main product of electrocatalytic reduction of furfural was furfuryl alcohol in the dark and under illumination. 相似文献
12.
Electrolytically deposited Cu on polyaniline film covered Pt substrate (Cu/PANI/Pt) is used as anode for the electrooxidation of methanol in alkaline medium. The electrochemical behavior and electrocatalytic activity of the electrode were characterized using cyclic voltammetry, impedance spectroscopy, chronomethods, rotating disc voltammetry and polarization studies. The morphology and composition of the modified film were obtained using SEM and EDAX techniques. The electrooxidation of methanol in NaOH is found to be more efficient on Cu/PANI/Pt than on bare Cu (Cu), electrodeposited Cu on Cu (Cu/Cu) and electrodeposited Cu on Pt (Cu/Pt) substrates. Partial chemical displacement of dispersed Cu on PANI with Pt or Pd further improved its performance towards methanol oxidation. 相似文献
13.
Ahmad Nozad Golikand Mehdi Asgari Elaheh Lohrasbi Mohammad Yari 《Journal of Applied Electrochemistry》2009,39(8):1369-1377
The objective of this study is to improve the catalytic activity of platinum by alloying with transition metal (Pd) in gas diffusion electrodes (GDEs) by oxygen reduction reaction (ORR) at cathode site and comparison of the acidic and alkaline electrolytes. The high porosity of single-walled carbon nanotubes (SWCNTs) facilitates diffusion of the reactant and facilitates interaction with the Pt surface. It is also evident that SWCNTs enhance the stability of the electrocatalyst. Functionalized SWCNTs are used as a means to facilitate the uniform deposition of Pt on the SWCNT surface. The structure of SWCNTs is nearly perfect, even after functionalization, while other types of CNTs contain a significant concentration of structural defects in their walls. So catalysts supported on SWCNTs are studied in this research. The electrocatalytic properties of ORR were evaluated by cyclic voltammetry, polarization experiments, and chronoamperometry. The morphology and elemental composition of Pt alloys were characterized by X-ray diffraction (XRD) analysis and inductively coupled plasma atomic emission spectroscopy (ICP-AES) system. The catalytic activities of the bimetallic catalysts in GDEs have been shown to be not only dependent on the composition, but also on the nature of the electrolytes. The GDEs have shown a transition from the slow ORR kinetics in alkaline electrolyte to the fast ORR kinetics in the acidic electrolyte. The results also show that introduction of Pd as transition metal in the Pt alloys provides fast ORR kinetics in both acidic and alkaline electrolytes. The performance of GDEs with Pt–Pd alloy surfaces towards the ORR as a function of the alloy’s overall composition and their behavior in acidic electrolyte was also studied. These results show that the alloy’s overall composition and also the nature of the electrolytes have a large effect on the performance of GDEs for ORR. 相似文献
14.
The kinetics of electrocatalytic reduction of nitrate on Pt(1 1 0) in perchloric acid was studied with cyclic voltammetry at a very low sweep rate of 1 mV s−1, where pseudo-steady state condition was assumed to be achieved at each electrode potential. Stationary current-potential curves in perchloric acid in the absence of nitrate showed two peaks at 0.13 V and 0.23 V (RHE) in the so-called adsorbed hydrogen region. The nitrate reduction proceeded in the potential region of the latter peak in the pH range studied. The reaction orders with respect to NO3− and H+ were observed to be close to 0 and 1, respectively. The former value means that the adsorbed NO3− at a saturated coverage is one of the reactants in the rate-determining step (rds). The latter value means that hydrogen species is also a reactant above or on the rds. The Tafel slope of nitrate reduction was −66 mV per decade, which is taken to be approximately −59 mV per decade, indicating that the rds is a pure chemical reaction following electron transfer. We discuss two possible reaction schemes including bimolecular and monomolecular reactions in the rds to explain the kinetics and suggest that the reactants in the rds are adsorbed hydrogen and adsorbed NO3− with the assistance of the results in our recent report for nitrate reduction on Pt(S)[n(1 1 1) × (1 1 1)] electrodes: the nitrate reduction mechanism can be classified within the framework of the Langmuir-Hinshelwood mechanism. 相似文献
15.
N. Zheng Y. Zeng P.G. Osborne Y. Li W. Chang Z. Wang 《Journal of Applied Electrochemistry》2002,32(2):129-133
A hemin-modified carbon paste electrode was constructed by a simple, rapid and effective method. The electrochemical behaviour of the modified electrode was characterized by cyclic voltammetry. The modified electrode obtained was very stable and exhibited electrocatalytic response for the reduction of oxygen. The possible mechanism for the catalytic reduction of dioxygen is discussed. The dioxygen is reduced via a one-step reduction accompanying four electrons and four protons transfer at pH 7–11. 相似文献
16.
研究铜电极与碳纤维/环氧复合材料的粘接工艺,比较铜的表面处理方法对于粘接强度和导电性的影响,并验证粘接的可靠性.首先分别用机械打磨、化学表面处理、表面电镀方法对铜片进行处理,然后通过铜粉导电胶与碳纤维/环氧复合材料粘接,测试粘接强度及电阻率,再通过湿热老化实验,对粘接的可靠性进行比较.测试结果表明,经化学表面处理的铜片与碳纤维/环氧复合材料粘接强度达到1.34 MPa,老化后强度保留率为76%;电阻率为4.19 Ω*m,老化后电阻率增加率为4.8%.从而确定化学表面处理方法得到的粘接强度和导电效果较佳. 相似文献
17.
A copper oxide–copper electrode was tested in alkaline media for the anodic electrochemical detection of thiourea (TU). The correlation between the history of the electrode and potential range for optimum sensing of the particular susceptible species was analysed by electrochemical and surface layer techniques. The chemical composition and morphology of surface layers were examined using the SEM/EDX technique. Electrochemical data were obtained by cyclic voltammetry (CV) and chronoamperometry (CA). The linear calibration plots for an amperometric detection of TU in a delimited potential range, using CV and CA, were obtained for the 1–8 mM concentration range. Some considerations on the correlation between TU, electrode formation and polarization conditions are proposed. A copper oxide–copper electrode can be used as an inexpensive alternative for amperometric determination of TU in alkaline media without fouling the electrode surface. 相似文献
18.
K. Bouzek M. Paidar A. Sadílková H. Bergmann 《Journal of Applied Electrochemistry》2001,31(11):1185-1193
The electrocatalytic activity of several materials for the nitrate reduction reaction was studied by cyclic voltammetry on a rotating ring disc electrode in solutions with different concentrations of sodium bicarbonate. Copper exhibited highest catalytic activity among the materials studied. Nitrate reduction on copper was characterized by two cathodic shoulders on the polarization curve in the potential region of the commencement of hydrogen evolution. In this potential range an anodic current response was observed on the Pt ring electrode identified as nitrite to nitrate oxidation. This indicates that nitrite is an intermediate product during nitrate reduction. These conclusions were verified by batch electrolysis using a plate electrode electrochemical cell. Copper and nickel, materials representing the opposite ends of the electrocatalytic activity spectra, were used in batch electrolysis testing. 相似文献
19.
This study uses rotating ring-disk electrode (RRDE) and linear sweep voltammetry (LSV) to characterize oxygen reduction kinetics in alkaline solution on platinum electrodes with various thickness of hydrous oxide (oxyhydroxy) film. Oxyhydroxy films are created on Pt electrodes by pretreatment in 1.0 mol dm−3 KOH at a constant voltage. The pretreatment voltage ranges from −1.2 to 1.0 V and is increased stepwise before each new experimental run to produce seven discreet films. LSV plots show oxyhydroxy film thickness strongly inhibits oxygen reduction and is inversely proportional to RRDE oxygen reduction current ID for LSV voltages ED from −0.1 to −0.46 V, but this trend reverses at ED more negative than −0.46 V so that the worst-performing electrode becomes the best. However, this improvement disappears at around −0.8 V, suggesting this change involves a negatively charged ion, possibly embedded into the metal in the top few atomic layers either interstitially or substitutionally. The 1.0 V-pretreated electrode in the ED range from −0.46 to −0.9 V of highest oxygen reduction current also exhibits the lowest hydrogen peroxide production, with zero H2O2 produced at −0.6 V, indicating the brief presence of the oxyhydroxy film on the Pt surface has strong lingering effects. The post-oxyhydroxy Pt surface is very different than the native Pt for oxygen reduction pathway and efficiency. Reaction order with respect to oxygen is close to 1. The rate constants of the direct O2 to H2O electroreduction reaction are increased with decreasing the potential from −0.2 to −0.6 V, but the O2 to H2O2 electroreduction is contrary to this expectation. The rate constants of H2O2 decomposition on the oxyhydroxy film-covered Pt electrode are near constant around 1 × 10−4 cm s−1 at ED > −0.5 V. 相似文献
20.
Macroporous silver films, ordered or fragmented, were fabricated by electrodeposition of silver into the interstitial spaces of templates formed by polystyrene (PS) latex spheres that had been self-assembled onto bare indium tin oxide (ITO) electrodes or onto gold-coated ITO (ITO/Au) electrodes (in which the electrode had been coated by gold sputtering deposition) from two room-temperature ionic liquids (ILs): N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (BMP-TFSI) and N-butyl-N-methylpyrrolidinium dicyanamide (BMP-DCA), respectively, under normal atmospheric conditions. After electrodeposition of silver, the PS spheres were removed by dissolution in tetrahydrofuran (THF) to leave a macroporous silver structure. The higher wettability of ILs onto PS spheres leads to improved penetration of the ILs into the cavities of the PS templates. Electrodeposition is easier if an electrolyte that has a good penetration into the interstitial spaces between the PS spheres. The macroporous silver electrode exhibited much better electrocatalytic performance with respect to nitrate reduction than a regular silver wire electrode. Quantitative determination of nitrate was also examined. 相似文献