首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 × 10−3 S cm−1 and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries.  相似文献   

2.
Poly[(ethylene glycol)diacrylate]-poly(vinylidene fluoride), a gel polymer blend with ethylene carbonate:dimethyl carbonate:ethylmethyl carbonate (EC:DMC:EMC, 1:1:1 volume ratio) and containing 1.0 M of lithium hexafluoro phosphate (LiPF6) as liquid components, is employed as a gel polymer electrolyte for an electric double layer capacitor (EDLC). Its electrochemical characteristics is compared with that of liquid organic electrolyte mixture of ethylene carbonate, dimethyl carbonate and ethylmethyl carbonate in a 1:1:1 volume ratio containing 1.0 M LiPF6 salt. The specific surface area of the activated carbon powder as an active material is 1908 m2/g. Liquid poly[(ethylene glycol)diacrylate] (PEGDA) oligomer with a high retention capability of liquid electrolytes is cured by UV irradiation and poly(vinylidene fluoride)-hexafluoropropylene (PVdF-HFP) copolymer with a porous structure endows polymer matrix with high mechanical strength.The specific capacitance of EDLC using the gel polymer electrolyte (GPE-EDLC) shows 120 F/g, which is better than the liquid organic electrolyte. Good cycling efficiency is observed for a GPE-EDLC with high retention capability of liquid components. The high specific capacitance and good cycling efficiency are most likely due to the polarization resistance of EDLC with the gel polymer electrolyte, which is lower than the liquid organic electrolyte. This may result from the distinguished adhesion between the activated carbon electrode and the gel polymer electrolyte, as well as high retention capability of liquid components.Power densities of GPE-EDLC and LOE-EDLC shows 1.88 kW/kg and 1.21 kW/kg, respectively. However, the energy densities are low in both electrolytes.The GPE-EDLC exhibits rectangular cyclic voltammogram similar to an ideal EDLC within operating voltage range of 0 V-2.5 V. It should be noted that a region of electric double layer means a wide voltage and a rapid formation. Redox currents of both EDLCs are not observed in the sweep region and the cyclic voltammograms are unchanged on repeated runs. The observed leakage current shows 49 μA after 720 s at a constant voltage of 2.5 V, due to the high ionic conductivity of 1.5 × 10−3 S cm−1 during storage time. Swelling and well-developed pore structures of the GPE blend films allow ions and solvents to move easily.  相似文献   

3.
A polymer electrolyte based on microporous poly(vinylidene fluoride-co-hexafluoropropane) (PVdF-HFP) film was studied for use in lithium ion batteries. The microporous PVdF-HFP (Kynar 2801) matrix was prepared from a cast of homogeneous mixture of PVdF-HFP and solvents such as ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC). After evaporation of DMC and EMC, a sold film of the PVdF-HFP and the EC mixture was obtained. EC-rich phase started its formation in the PVdF-HFP/EC film at EC content of about 60 wt.% based on the total weight of PVdF-HFP and EC. The formation of the new phase resulted in the abrupt increase of the porosity of the PVdF-HFP matrix from 32 to 62%. The ionic conductivity of the film soaked in 1 M LiPF6-EC/DMC=1/1 was significantly increased from order of 10−4 S/cm to order of 10−3 S/cm at the EC content of 60 wt.%. Thermal and spectroscopic investigations showed that most of the EC interact with PVdF-HFP with the EC content being below 60 wt.%. MCMB/polymer electrolyte/LiCoO2 cells employing the microporous PVdF-HFP polymer film showed stable charging/discharging characteristics at 1C rate and good rate capability.  相似文献   

4.
以聚偏氟乙烯(PVDF)-六氟丙烯(HFP)中PVDF的仲氟原子直接引发甲基丙烯酸(3-磺酸钾)丙酯(SPMA)的原子转移自由基聚合,成功得到以PVDF-HFP为主链、侧链含磺酸基团的接枝聚合物(PVDF-HFP-g-PSPMA)质子交换膜. 通过红外、核磁分析方法对PVDF-HFP-g-PSPMA的结构进行表征. 反应不同时间得到的PVDF-HFP-g-PSPMA离子交换容量为0.051~0.59 meq/g,质子传导率为(2.58~30.9)×10-2 S/m.  相似文献   

5.
A novel sulfur/graphene nanosheet (S/GNS) composite was prepared via a simple ball milling of sulfur with commercial multi-layer graphene nanosheet, followed by a heat treatment. High-resolution transmission and scanning electronic microscopy observations showed the formation of irregularly interlaced nanosheet-like structure consisting of graphene with uniform sulfur coating on its surface. The electrochemical properties of the resulting composite cathode were investigated in a lithium cell with a gel polymer electrolyte (GPE) prepared by trapping 1 mol dm−3 solution of lithium bistrifluoromethanesulfonamide in tetraethylene glycol dimethyl ether in a polymer matrix composed of poly(vinylidene fluoride-co-hexafluoropropylene)/poly(methylmethacrylate)/silicon dioxide (PVDF-HFP/PMMA/SiO2). The GPE battery delivered reversible discharge capacities of 809 and 413 mAh g−1 at the 1st and 50th cycles at 0.2C, respectively, along with a high coulombic efficiency over 50 cycles. This performance enhancement of the cell was attributed to the suppression of the polysulfide shuttle effect by a collective effect of S/GNS composite cathode and GPE, providing a higher sulfur utilization.  相似文献   

6.
A novel solid polymer electrolyte (pore-gel SPE) has been found to provide superior SPE having a high conductivity, good mechanical strength and low solution leakage. This pore-gel SPE was prepared from gelation in pores of polymer membrane with electrolyte solution including solvent. The conductivity of pore-gel type PVDF-HFP/ TEABF4 (Tetraethylammomium tetrafluoroborate) membrane can reach 1.6×10-1 Scm-1. The tensile strength of this membrane was 4,000 kPa, which is about 23 times larger than that of gel-type SPE with the same composition. Poregel SPE reduced solution leakage to 0%, compared with 2% of hybrid-type SPE after 2.0 hr leakage test in PVDFHFP/ TEABF4 membrane.  相似文献   

7.
S.S Zhang  M.H Ervin  K Xu  T.R Jow 《Electrochimica acta》2004,49(20):3339-3345
We studied microporous poly(acrylonitrile-methyl methacrylate), AMMA, membrane as the separator of Li/LiMn2O4 cell. The porous AMMA membrane was prepared by the phase inversion method with N,N-dimethylformamide (DMF) as the solvent and water as the non-solvent. We observed that morphology of the resulting membrane was strongly affected by the concentration of polymer solution: low concentration produced finger-like pores with dense skin on two surfaces of the membrane, while high concentration yielded open voids with dense layer on the other surface of the membrane. Regardless of their morphology, both membranes could be rapidly wetted by the liquid electrolyte (1.0 m LiBF4 dissolved in 1:3 wt.% mixture of ethylene carbonate (EC) and γ-butyrolactone (GBL)), and could be swollen at elevated temperatures, which resulted in the formation of a microporous gel electrolyte (MGE). It was shown that the resulting MGE not only had high ionic conductivity and but also had good compatibility with metal lithium even at 60 °C. Cyclic voltammetric test showed that the MGE had an electrochemical window of 4.9 V versus Li+/Li. At room temperature, the Li/MGE/LiMn2O4 cell showed excellent cycliability with a specific capacity of 121-125 mA h g−1 LiMn2O4. It was shown that even at 60 °C good mechanical strength of the MGE remained. Therefore, the MGE is suitable for the application of battery separator at elevated temperatures.  相似文献   

8.
Poly(acrylonitrile-butyl acrylate) gel polymer electrolyte was prepared for lithium ion batteries. The preparation started with synthesis of poly(acrylonitrile-butyl acrylate) by radical emulsion polymerization, followed by phase inversion to produce microporous membrane. Then, the microporous gel polymer electrolytes (MGPEs) was prepared with the microporous membrane and LiPF6 in ethylene carbonate/diethyl carbonate. The dry microporous membrane showed a fracture strength as high as 18.98 MPa. As-prepared gel polymer electrolytes presented ionic conductivity in excess of 3.0 × 10−3 S cm−1 at ambient temperature and a decomposition voltage over 6.6 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for Li-ion batteries.  相似文献   

9.
The PAN-DMSO-Et4NBF4 and PAN-DMSO-Et4NTf (Tf is triflate ion) electrolytes were prepared as white, turbid foils with a thickness in the range of 0.1-0.5 mm, using the casting technique. Room temperature conductance of the electrolytes, detected from ac impedance experiments, was at the level of 8 and 14 mS cm−1 for Et4NBF4 and Et4NTf salts, respectively. The electrochemical stability window of approximately 2.6-2.8 V was estimated using a glassy carbon electrode. Temperature dependence of the conductivity is of the Arrhenius-type for both electrolytes, with an activation energy of approximately 34 kJ mol−1. The double-layer capacitors built with these electrolytes, serving both as separators and activated carbon powder (ACP) binders, showed a specific capacity of 50 F g−1 of carbon material. Capacitors were assembled by sandwiching the PAN-DMSO-salt electrolyte between two PAN-salt-DMSO-ACP-AB electrodes and pressing across the system; the resulting devices had a coin-like shape with 8 mm diameter and thickness between 2.0 and 2.5 mm.  相似文献   

10.
Takeshi Otsuka  Yoshiki Chujo 《Polymer》2009,50(14):3174-11950
Transparent and homogeneous organic-inorganic hybrids with poly(vinylidene fluoride) (PVdF) could be prepared by addition of zirconium oxide nanocrystals (ZrO2-NCs) in a polar aprotic solvent and the subsequent solvent evaporation. The polar aprotic solvents such as DMF, DMAc and DMSO would form hydrogen bonds with Zr-OH groups of the ZrO2-NC and play a role as compatibilizers between the PVdF and ZrO2-NCs. The interpenetration between PVdF and ZrO2-NCs resulted in the nanometer dispersion of PVdF chains in a ZrO2-NC matrix. High dosage of the ZrO2-NCs as physical inhibitors between PVdF polymer chains sufficiently prevented the PVdF chain mobility in the internal of hybrids. The transparency of the PVdF/ZrO2-NC hybrids was dramatically improved by controlling the content of ZrO2-NCs. Novel multifunctional hybrids with high transparency, high refractive index and good mechanical property were obtained by hybridization of PVdF and ZrO2-NCs.  相似文献   

11.
Ningping Chen 《Polymer》2004,45(7):2403-2411
Hydrophilic polymer segments, consisting of styrene sulfonic acid (SSA) units, were uniformly embedded into hydrophobic poly(vinylidene fluoride) (PVDF) matrix through the mediation of poly(methyl methacrylate) (PMMA) segments, with which SSA segments form a copolymer. Discrete domains (∼100 nm) assembled by the SSA segments have been identified throughout the matrix of the membrane, which was prepared through blending of the copolymer P(MMA-SSA) and the PVDF. The thermal stability of the SSA was largely boosted in such hydrophobic environment. This unique matrix structure offers proton conductivity of as high as 10−3 S/cm at a low SSA equivalent (0.6 mmol -SO3H/g of membrane), which is accompanied with a low level of water uptake (26%) at ambient temperature. Using this type of polymer membrane as electrolyte, the electrochemical cell possesses obvious capacitive resistance when the membrane is in the anhydride form according to the impedance analysis. However, the capacitive character vanishes when the membrane is hydrated; this response is attributed to the existence of highly dispersed SSA domains in the membrane. This work also analyzes the impedance spectra of the membranes at different hydrated states or with different SSA contents by using an equivalent electrical circuit.  相似文献   

12.
Kumiko Asai  Kohji Tashiro 《Polymer》2008,49(19):4298-4306
To understand the effect of the nano-filler particles on the crystallization kinetics and crystalline structure of poly(vinylidene fluoride) (PVDF) upon nano-composite formation, we have prepared PVDF/organically modified layered titanate nano-composite via melt intercalation technique. The layer titanate (HTO) is a new nano-filler having highly surface charge density compared with conventional layered silicates. The detailed crystallization behavior and its kinetics including the conformational changes of the PVDF chain segment during crystallization of neat PVDF and HTO-based nano-composite (PVDF/HTO) have been investigated by using differential scanning calorimetric, wide-angle X-ray diffraction, light scattering, and infrared spectroscopic analyses. The neat PVDF predominantly formed α-phase in the crystallization temperature range of 110-150 °C. On the other hand, PVDF/HTO exhibited mainly α-phase crystal coexisting with γ- and β-phases at low Tc range (110-135 °C). A major γ-phase crystal coexists with β- and α-phases appeared at high Tc (=140-150 °C), owing to the dispersed layer titanate particles as a nucleating agent. The overall crystallization rate and crystalline structure of pure PVDF were strongly influenced in the presence of layered titanate particles.  相似文献   

13.
The miscibility of blends of poly (ε-caprolactone) (PCL)/poly(vinylidene fluoride) (PVDF) was studied by measuring the cloud point, melting point depression and crystallization kinetics. Lower critical solution temperature (LCST) behavior was observed at PCL-rich compositions, whilst it was not observed at high compositions of PVDF. However it is possible that an LCST could exist below the melting point of PVDF. From analysis of the melting point depression, the Flory interaction parameter x12, was calculated from the Nishi-Wang equation and the value was found to be-1.5. The crystallization rate of PCL increased with increasing amount of PVDF in the blend. The spinodal curve for PCL/PVDF blends was simulated by using the lattice-fluid theory.  相似文献   

14.
A novel method of introducing a synthesized organic nitrogenous compound 2,6 (N-pyrazolyl)isonicotinic acid (BNIN) and its effect on the conduction behavior of poly(vinylidene fluoride) (PVdF)–poly(ethylene oxide) (PEO) polymer-blend electrolyte with potassium iodide (KI) and iodine (I2) and the corresponding performance of the dye-sensitized solar cells (DSSCs) were studied. A systematic investigation of the blends using FTIR provides evidence of interaction of BNIN with the polymer. Differential scanning calorimetry (DSC) study proves the miscibility of these polymers. Due to the coordinating and plasticizing effects of BNIN, the ionic conductivity of polymer blend electrolytes is enhanced. The efficiency of DSSC using BNIN doped polymer blend electrolyte was 7.3% under an illumination of 60 mW cm−2 were observed for the best performance of a solar cell in this work.  相似文献   

15.
ABSTRACT

In this work, boron nitride (BN) and exfoliated boron nitride nanosheets (BNNs) were employed as thermal conductive fillers to improve the thermal conductivity of poly(vinylidene fluoride) (PVDF) composites. Results suggested that the thermal conductivity of PVDF increases significantly with an increase in loading content of functional fillers. When the mass ratio of fillers was more than 30 wt%, the heat conduction network was formed. BNNs were capable of forming denser heat conduction network as per the SEM observations. In this scenario, PVDF/BNNs composites demonstrated excellent thermal conductivity. For example, the thermal conductivity of PVDF/BNNs (60/40) was 0.82 W/mK, which was 2.4 times and 17% higher than that of neat PVDF and PVDF/BN (60/40) counterpart, respectively. The non-isothermal crystallization of corresponding composite was studied by Mo method. Combining with XRD results, both BN and BNNs acted as the nucleation agents but had no effect on crystal forms.  相似文献   

16.
Submicron poly(vinylidene fluoride) (PVDF)/polyaniline (PANI) core-shell latex particles are synthesized and examined as an active component in a simple conductometric chemical sensor. The structure and physical properties of these particles and nanostructured composite PVDF-PANI polymer films built of them are characterized with transmission electron, atomic force, and helium ion microscopy techniques, differential scanning calorimetry, and conductivity measurements. The nanostructured composite films with conductivity of about 4 × 10−4 S/cm suitable for sensor applications are prepared by casting from the core-shell particles dispersions on glass substrates patterned with silver electrodes followed by annealing at 180 °C, i.e. above Tm of the PVDF component. Sensor properties of these films are tested by measuring current-voltage (I-V) characteristics in response to varying concentration of NH3 or HCl vapors. The developed thin film sensor heterostructures with electrically conductive percolation network of PANI as an active component and employing the conductometric detection scheme show high sensitivity to both analytes. However, the polymer material is especially efficient for application to NH3 sensing with the detection limit as low as 100 ppb, and good reproducible recovery behavior upon repeated exposure to NH3 at ambient conditions.  相似文献   

17.
We have evaluated the mechanical strength of a series of composites consisting of carbon particles bound together by poly(vinylidene fluoride) (PVDF), which is closely related to the carbonaceous anode in a lithium ion battery. We used a balanced beam scrape adhesion tester and evaluated the influence of carbon particle structure, the chemical properties of PVDF, and the processing parameters of annealing temperature and casting solvent on the adhesion of the composite film to a copper substrate. The composite prepared with amorphous carbon shows over 10 times higher adhesion strength than those fabricated from other graphite materials. This results from chemical binding that is intermediate between semi-ionic and covalent C-F bonds, as detected by X-ray photoelectron spectroscopy. To address the effect of the crystalline phase of the binder on the adhesion strength, we investigated PVDF crystallinity in the composite films using differential scanning calorimetry. Samples with higher crystallinity show higher adhesion strength, independent of annealing temperature and casting solvent. The scratch adhesion was also measured for swollen electrodes immersed in 3:7 volume ratio of ethylene carbonate:ethyl methyl carbonate (EC:EMC) at different temperatures. After being swollen, the composite films prepared from PVDF modified with hydroxyl functional groups show higher adhesion strengths than the others due to their low uptake of the electrolyte solvent.  相似文献   

18.
Newly proposed polymer electrolyte membranes (PEMs) composed of an electrospun poly(vinylidene fluoride) (PVDF) fibrous mat embedded in a poly(4‐vinylpyridine) (P4VP) matrix were successfully fabricated in order to improve the mechanical and dimensional stabilities and ionic conductivity of membranes in lithium rechargeable batteries. Fourier transform infrared spectroscopic analysis showed that as a result of the use of a high voltage during electrospinning the crystalline structure of PVDF changed partially from α‐phase to β‐phase. Energy‐dispersive X‐ray spectroscopy confirmed the existence of crosslinked P4VP in the PVDF fibrous mat. The electrolyte uptakes of PVDF and PVDF/P4VP composite mats were higher than that of PVDF cast film. The tensile properties of PVDF/P4VP composite mat were considerably improved compared to those of the pristine PVDF fibrous mat under both dry and wet (soaked with electrolyte) conditions. In addition, the mechanical and dimensional stabilities of the PVDF/P4VP composite PEM were further enhanced due to crosslinking between the P4VP chains. Furthermore, the PVDF/P4VP composite PEM exhibited an ionic conductivity that was an order of magnitude higher than that of traditional PVDF film. © 2012 Society of Chemical Industry  相似文献   

19.
Poly(vinylidene fluoride)/sulfonated poly(phthalazinone ether sulfone ketone) (PVdF/SPPESK) blend membranes are successfully prepared by solution blending method for novel proton exchange membrane (PEM). PVdF crystallinity, FTIR‐ATR spectroscopy, thermal stability, morphology, water uptake, dimension stability, and proton conductivity are investigated on PVdF/SPPESK blends with different PVdF contents. XRD and DSC analysis reveal that the PVdF crystallinity in the blends depends on PVdF content. The FTIR‐ATR spectra indicate that SPPESK remains proton‐conducting function in the blends due to the intactness of ? SO3H group. Thermal analysis results show a very high thermal stability (Td1 = 246–261°C) of the blends. PVdF crystallinity and morphology study demonstrate that with lower PVdF content, PVdF are very compatible with SPPESK. Also, with lower PVdF content, PVdF/SPPESK blends possess high water uptake, e.g., P/S 10/90 and P/S 15/85 have water uptake of 135 and 99% at 95°C, respectively. The blend membranes also have good dimension stability because the swelling ratios are at a fairly low level (e.g., 8–22%, 80°C). PVdF/SPPESK blends with low PVdF content exhibit very high proton conductivity, e.g., at 80°C, P/S 15/85 and P/S 10/90 reach 2.6 × 10?2 and 3.6 × 10?2 S cm?1, respectively, which are close to or even higher than that (3.4 × 10?2 S cm?1) of Nafion115 under the same test condition. All above properties indicate that the PVdF/SPPESK blend membranes (particularly, with 10–20% of PVdF content) are very promising for use in PEM field. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
The effect of a salt additive, lithium perchlorate, on the morphology and crystal structure of PVDF membranes prepared by wet phase inversion process was studied. The gelation phase boundaries of the quaternary system, LiClO4/water/DMF/PVDF, were determined at 25 °C. It was found that the gelation lines shifted up progressively with increasing salt contents in this system. For a salt-free casting dope, the formed membrane exhibited a typical asymmetric structure characterized by the skin, parallel columnar macrovoids, and cellular pores. WAXD analysis indicated that PVDF crystallized into ‘α’ (type II) structure in this membrane. By contrast, when PVDF was precipitated from high salt-content dopes (e.g. ≥5 wt%), the macrovoids bent and extended towards the bottom region while the original cellular pores evolved into very large voids. The PVDF crystallites became ‘β’ form (type I) in these membranes. Thermal analysis (DSC) of all membranes showed dual melting peaks at low heating rates (≤5 °C/min), suggesting that the crystallites formed in the immersion-precipitation process were imperfect and they underwent re-crystallization during the heating process. Using low voltage SEM at high magnifications (e.g. 100 KX at 0.55 KV) on uncoated samples, the fine structures (10-20 nm) of the PVDF crystallites were observed. And at very high magnifications (225 KX at 0.59 KV), it was observed that the skin region of the membrane prepared from high salt-content dopes actually contained many nano-pores (e.g. 20 nm). This contributes to the high permeation rate and low solute rejection as revealed from the water-flux measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号