首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel nanocomposite of palladium nanoclusters/poly(N-acetylaniline) nanorods was electrodeposited on to a glassy carbon electrode by cyclic voltammetry (CV). This electrode, Pd/PAANI/GCE, was characterized by X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), CV and chromoamperometry. It was demonstrated that the ball-shaped Pd nanoclusters were mainly growing on the ends of the nanorods, forming a novel nanocomposite. The preliminary study also demonstrated that the electrode modified with this nanocomposite matrix had high electrocatalytic activity toward 4-e oxygen reduction.  相似文献   

2.
Poly(ethylethylenimine), PEEI, was prepared from poly(ethylenimine) by reductive alkylation with acetaldehyde. Samples of PEEI and poly(methylenimine), PMEI, complexed with LiCF3SO3 were prepared and characterized using differential scanning calorimetry and FT-IR. Small differences in the room temperature spectra of the two complexes were noted; these differences were due to the presence of a CH2 group in the side chain of PEEI. The predominant form of cation-anion interactions was a contact ion pair. As the samples were heated, a transition from ion pairs to “free” ions was observed, with most of the change occurring between 140 and 150 °C in both PEEI and PMEI complexes. Thermal cycling established that the transition was irreversible in the time frame of the cycling experiments. Two-dimensional correlation spectroscopy did not show any significant intensity or frequency changes in bands sensitive to cation-polymer interactions during any heating or cooling cycle.  相似文献   

3.
A monomer, 2-(isobutyramido)-3-methylbutyl methacrylate (IMMA) was synthesized through a two-step reaction. When a few of IMMA (less than 4 mol%) was copolymerized with N-vinylimidazole (VIm) under free radical polymerization condition, water-soluble P(VIm-co-IMMA) copolymers were obtained. Their structural information was verified and interpreted from 1H NMR, FTIR and GPC. Kinetic analyses from 1H NMR demonstrated that one-batch addition of IMMA into the polymerization system led to an inhomogeneous distribution of IMMA units in the copolymers, whereas homogeneous distribution of IMMA units in the copolymers could be obtained through the portion-wise addition of IMMA monomer. The thermal properties of such copolymers were measured by DSC. Compared with PVIm homopolymer, the few IMMA units in the P(VIm-co-IMMA) copolymer had little influence on the Tg values. The obtained P(VIm-co-IMMA) copolymers were thermoresponsive in water, and their phase transition temperatures could be efficiently raised through reducing the IMMA content in the copolymers, raising the addition times of IMMA monomers or lowering the pH of media. Dynamic light scattering analysis showed that unlike the traditional thermoresponsive linear polymers, obvious size shrinkage around the phase transition temperature could not be observed in such P(VIm-co-IMMA) copolymers. Such copolymers could be used as smart organocatalysts in the hydrolysis of p-nitrophenyl acetate. Below the phase transition temperature the reaction rate followed the Arrhenius law, but above the phase transition temperature the reaction rate increased much slower than the prediction from the Arrhenius law. Moreover, the catalytic transition temperature could be tuned through utilizing the P(VIm-co-IMMA) copolymers with different phase transition temperature. The mechanism was discussed accordingly.  相似文献   

4.
Jianping Deng  Toshio Masuda 《Polymer》2004,45(22):7395-7400
The stability of several poly(N-propargylamides) was investigated in solution and in solid state on the basis of molecular weight change with time, and further their thermal stability was investigated by TGA. When the stability of poly(N-propargylamides) with varying pendent groups was compared, polymers with pendent groups of moderate size showed the highest stability in solution. Too short and too bulky pendent groups were not favorable for the stability of polymers. When poly(N-propargylheptanamide) (poly(6)) was stored in THF as solution at −20 °C in the absence of oxygen in dark, its degradation rate was the lowest. The degradation rate of poly(6) depended on the solvents used, which may be related to different solubility of oxygen in these solvents. Polymers with high cis contents degraded faster than polymers with low cis contents did. Addition of TEMPO and DPPH into the poly(6)/THF solution more or less depressed the degradation of poly(6). The degradation of polymer main chain in solution was always accompanied by the decrease of cis content, i.e. geometric isomerization from cis- to trans-structure. When the polymers were stored in the solid state at −20 °C, the polymers having alkyl pendent groups with moderate length were more stable than those with bulky pendent groups. Geometric isomerization occurred along with degradation in the solid state as well.  相似文献   

5.
Haifeng Gao  Shoukuan Fu 《Polymer》2005,46(4):1087-1093
In this paper, novel thermosensitive poly(N-isopropylacrylamide) (PNIPAM) nanocapsules with temperature-tunable diameter and permeability are reported. Firstly, the core-shell composite microparticles were synthesized by precipitation polymerization with isothiocyanate fluorescein (FITC) entrapped SiO2 as core and cross-linked PNIPAM as shell. Then, the SiO2 core was etched by hydrofluoric acid at certain condition and the pre-trapped FITC molecules remained within the inner cavity. The FITC release profile and TEM studies clearly indicate that the release behavior of FITC could be controlled effectively by the external temperature. Above the LCST of PNIPAM (32 °C), the dehydrated PNIPAM shell inhibited the release of FITC from the internal cavity while below its LCST, the fluorophore could permeate the swollen shell easily.  相似文献   

6.
Xiaoju Lu  Cheng Li  Shu Yang  Lifen Zhang 《Polymer》2007,48(10):2835-2842
At room temperature atom transfer radical polymerization (ATRP) of N-vinylpyrrolidone (NVP) was carried out using 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetra-azacyclo-tetradecane (Me6Cyclam) as ligand in 1,4-dioxane/isopropanol mixture. Methyl 2-chloropropionate (MCP) and copper(I) chloride were used as initiator and catalyst, respectively. The polymerization of NVP via ATRP could be mediated by the addition of CuCl2. The resultant poly(N-vinylpyrrolidone) (PNVP) has high conversion of up to 65% in 3 h, a controlled molecular weight close to the theoretical values and narrow molecular weight distribution between 1.2 and 1.3. The living nature of the ATRP for NVP was confirmed by the experiments of PNVP chain extension. With PNVP-Cl as macroinitiator and N-methacryloyl-N′-(α-naphthyl)thiourea (MANTU) as a hydrophobic monomer, novel fluorescent amphiphilic copolymers poly(N-vinylpyrrolidone)-b-poly(N-methacryloyl-N′-(α-naphthyl)thiourea) (PNVP-b-PMANTU) were synthesized by ATRP. PNVP-b-PMANTU copolymers were characterized by 1H NMR, GPC-MALLS and fluorescence measurements. The results revealed that PNVP-b-PMANTU presented a blocky architecture.  相似文献   

7.
Mechanical properties of miscible blends of high molecular weight poly(N-vinyl pyrrolidone) (PVP) with a short-chain, liquid poly(ethylene glycol) (PEG) of molecular weight 400 g/mol have been examined as a function of PVP-PEG composition and degree of hydration. The small-strain behavior in the linear elastic region has been evaluated with the dynamic mechanical analysis and compared with the viscoelastic behavior of PVP-PEG blends under large strains in the course of uniaxial drawing to fracture and under cyclic extension. A strong decoupling between the small-strain and the large strain properties of the blends has been observed, indicative of a pronounced deviation from rubber elasticity in the behavior of the blends. This deviation, also seen on tensile tests under fast drawing, is attributed to the peculiar phase behavior of the blends and the molecular mechanism of PVP-PEG interaction. Nevertheless, for the PVP blend with 36% PEG, under comparatively low extension rates, the reversible contribution to the total work of deformation up to ε=300% has been found to be maximum at around 70%, while the blends containing 31 and 41% PEG behave rather as an elastic-plastic solid and a viscoelastic liquid, respectively.  相似文献   

8.
Poly(N-isopropyl acrylamide) (pNIPAM) is an interesting material in that it shows a thermoresponsive behavior around 32 °C in aqueous solutions. This behavior mimics that of many proteins in solution and as a result, many researchers have studied pNIPAM as a model for protein behavior. Yet, little is known about the processability of pNIPAM into three-dimensional matrices and whether such processing affects polymer conformation. In this work, 3D fibrous mats of pNIPAM were prepared by electrospinning from three different solvents and the resulting morphologies evaluated. Additionally, electrospun pNIPAM was evaluated with polarized Raman and infrared spectroscopies and compared against the spectra of the bulk material. It was found that the electrospinning process did not alter the polymer structure or morphology.  相似文献   

9.
1H NMR spectroscopy was used to investigate temperature-induced phase transitions in D2O solutions of poly(N-isopropylmethacrylamide) (PIPMAm)/poly(N-isopropylacrylamide) (PIPAAm) mixtures and P(IPMAm/IPAAm) random copolymers of various composition on molecular level. While two phase transitions were detected for PIPMAm/PIPAAm mixtures, only single phase transition was found for P(IPMAm/IPAAm) copolymers. The phase transition temperatures of PIPAAm component (appears at lower temperatures) are not affected by the presence of PIPMAm in the mixtures; on the other hand, the temperatures of the phase transition of PIPMAm component (appears at higher temperatures) are affected by the phase separation of the PIPAAm component and depend on concentration of the solution. For P(IPMAm/IPAAm) random copolymers, a departure from the linear dependence of the transition temperatures on the copolymer composition was found for a sample with 75 mol% of IPMAm monomeric units.  相似文献   

10.
Poly(N-vinyl-carbazole) (PVK) thin films doped with bromine has been studied by scanning electron microscopy, X-ray diffraction, infrared absorption, X-ray photoelectron spectroscopy (XPS), electron spin resonance (ESR), optical transmission (visible, near ultra violet) and conductivity measurements. The polymer has been doped at room temperature and at 373 K. It is shown by ESR, XPS and optical measurements that a charge transfer complex (CT-complex) is formed between PVK and Br. However, if some bromine acts as dopant of the polymer there is another bromine contribution, which corresponds to bromine covalently bonded to PVK and some only adsorbed. It is also shown by ESR that there is not only polymer doping by bromine but also some partial polymer degradation. Therefore, it can be said that the optimum doping condition of PVK thin films with bromine has been shown to be room temperature post-doping.  相似文献   

11.
Poly(ethylene oxide)-grafted poly(N-isopropylacrylamide) networks (PNIPAAm-g-PEO) were prepared via the reversible addition-fragmentation chain transfer polymerization (RAFT) of N-isopropylacrylamide with trithiocarbonate-terminated poly(ethylene oxide) and N,N′-methylenebisacrylamide as the chain transfer agent and the crosslinking agent, respectively. It was found that the PNIPAAm-g-PEO copolymer networks were microphase-separated and that PEO microdomains were dispersed in the PNIPAAm matrix. The hydrogel behavior of the PNIPAAm-g-PEO networks was investigated using swelling, deswelling and reswelling tests. The PNIPAAm-g-PEO hydrogels displayed faster responses to external temperature changes than did the control PNIPAAm hydrogel.  相似文献   

12.
Konstantinos Pagonis 《Polymer》2004,45(7):2149-2153
The behaviour of linear poly(N,N-dimethylacrylamide) (PDMAM) chains was studied by turbidimetry and viscometry in mixtures of water with the polar organic solvents methanol, dioxane and acetone. The swelling-deswelling behaviour of PDMAM gels in the same solvent mixtures was also investigated. Contrary to the behaviour in water-methanol mixtures, in water-dioxane and water-acetone mixtures a significant shrinkage of polymer chains and deswelling of polymer gels, followed by phase separation, was observed for high organic solvent fractions. Cononsolvency phenomena were found to be temperature-dependent, as demixing occurred upon decreasing temperature. This upper critical solution temperature (UCST) phase separation behaviour in mixed solvents was studied by turbidimetry and compared to the well-known lower critical solution temperature (LCST) behaviour of poly(N-isopropylacrylamide) (PNIPAM) in similar solvents mixtures.  相似文献   

13.
Synthesis of poly(N-methylaniline) (PNMA) on pure iron and Pt electrodes was carried out from aqueous 0.3 M oxalic acid solution containing 0.1 M N-methylaniline (NMA) by potentiodynamic and galvanostatic techniques. It was found that when compared to polyaniline (PAni) and its ring- and N-ethyl-substituted derivatives, PNMA can be electrosynthesized with lower upper scanning potential (upper potential limit, Eupp) of 0.8 V vs. saturated calomel electrode (SCE) on an Fe electrode. PNMA coatings were characterized by electrochemical, scanning electron microscopy (SEM) and FTIR techniques. Linear anodic potentiodynamic polarization results proved that increasing the acidity of the polymerization solution causes more effective protection against corrosion in 0.5 M H2SO4 medium for PNMA. Moreover, PNMA exhibited similar protective properties with PAni under the same corrosion test conditions. Tafel test results reveal that the PNMA coating appears to enhance protection for iron in 0.5 M NaCl and 0.1 M HCl solutions. According to EIS results, the PNMA coating is able to offer protection to Fe electrodes in NaCl compared to that in HCl medium over a long immersion period.  相似文献   

14.
Yuriko Matsumura  Kaoru Iwai 《Polymer》2005,46(23):10027-10034
Poly(N-isopropylacrylamide) (PNIPAM) microgel particles labeled with 3-(2-propenyl)-9-(4-N,N-dimethylaminophenyl)phenanthrene (VDP) as an intramolecular fluorescent probe were prepared by emulsion polymerization. The thermo-responsive behavior of the VDP-labeled PNIPAM microgel particles dispersed in water was studied by turbidimetric and fluorescence analyses. The transition temperature of the VDP-labeled PNIPAM microgel particles in water determined by turbidimetric analysis was ca. 32.5 °C. The wavelength at the maximum fluorescence intensity of the VDP units linked directly to the microgel particles dramatically blue-shifted around the transition temperature. In addition it gradually blue-shifted even below the transition temperature where there was no change observed in the turbidity. These findings suggest that the gradual shrinking of microgel particles occurs with increasing temperature and the subsequent dramatic shrinking results in the increasing in the turbidity. The transition temperatures of VDP-labeled poly(N-n-propylacrylamide) and poly(N-isopropylmethacrylamide) microgel particles determined by turbidimetric analysis were ca. 23 and ca. 42.5 °C, respectively, and their thermo-responsive behavior was similar to that for the VDP-labeled PNIPAM system. In these three systems the microenvironments around the fluorescent probes above the transition temperatures became more hydrophobic than those below the transition temperature, and the estimated values of microenvionmental polarity around the VDP units on their collapsed states were almost the same.  相似文献   

15.
Changyou Gao  Helmuth Möhwald 《Polymer》2005,46(12):4088-4097
Grafting of poly(N-isopropylacrylamide) (PNIPAAm) having carboxylic groups at one end onto poly(allylamine) (PAH) in the presence of water soluble carbodiimide has yielded PAH-g-PNIPAAm copolymers with grafting ratios of 50, 29 and 18, respectively. These thermosensitive copolymers exhibit a lower critical solution temperature (LCST) at 34 °C at a temperature increase cycle regardless of their grafting ratios, a temperature identical to that of PNIPAAm-COOH oligomers. Temperature cycling reveals completely reversible polymer aggregation and dissolution above and below the LCST, respectively. Much smaller particle sizes are observed by scanning force microscopy and transmission electron microscopy compared to dynamic light scattering. A porous sphere model is suggested to depict the structure of the particles formed above the LCST, by which the dependence of the particle sizes on their grafting ratios is interpreted taking into account the surface tension and the spatial aggregation distance. Finally, to demonstrate the capability of the copolymers being used as thermosensitive polyelectrolytes, assembly onto multilayers is conducted and the increase of layer thickness is confirmed by small angle X-ray scattering and ellipsometry characterizations.  相似文献   

16.
The phase transition in poly(N-vinylpyrrolidone) (PVP) aqueous solutions is shown to occur at heating upon addition of organic acids such as isobutyric, isovaleric, and, especially, trichloroacetic (TCA) ones. The cloud point temperature (Tc) of PVP solutions drops from 70 to 6 °C when the TCA concentration rises from 0.2 to 0.3 mol/l. A decrease in Tc is even more drastic when HCl is also added though HCl addition to the system without TCA does not result in phase separation. These phenomena are explained by the reversible coordination between the non-ionized form of TCA and PVP units via hydrogen bonding. An increase in the medium acidity depresses TCA dissociation, resulting in an increase in PVP-TCA associate concentration. Calculations based on the pKa values of TCA confirm this suggestion. The similar behavior is observed with poly(N-vinylcaprolactam) systems. The amount of TCA bound to PVP has been determined by means of separation of the precipitate by centrifugation at temperatures above Tc and subsequent titration of TCA in the polymer with NaOH. It is shown that the precipitate contains one TCA molecule per 3-6 VP units, this value decreasing down to 1.25-2 upon HCl addition to the system.  相似文献   

17.
Fangping Yi 《Polymer》2009,50(2):670-198
Reversible addition-fragmentation chain transfer polymerization was employed to prepare the crosslinked poly(N-isopropylacrylamide)-graft-polystyrene networks (PNIPAAm-g-PS). Due to the immiscibility of PNIPAAm with PS, the crosslinked PNIPAAm-g-PS copolymers displayed the microphase-separated morphology. While the PNIPAAm-g-PS copolymer networks were subjected to the swelling experiments, it is found that the PS block-containing PNIPAAm hydrogels significantly exhibited faster response to the external temperature changes according to swelling, deswelling, and reswelling experiments than the conventional PNIPAAm hydrogels. The improved thermo-responsive properties of hydrogels have been interpreted on the basis of the formation of the specific microphase-separated morphology in the hydrogels, i.e., the PS blocks pendent from the crosslinked PNIPAAm networks were self-assembled into the highly hydrophobic nanodomains, which behave as the microporogens and thus promote the contact of PNIPAAm chains and water. The self-organized morphology in the hydrogels was further confirmed by photon correlation spectroscopy (PCS). The PCS shows that the linear model block copolymers of PNIPAAm-g-PS networks were self-organized into micelle structures, i.e., the PS domains constitute the hydrophobic nanodomains in PNIPAAm-g-PS networks.  相似文献   

18.
Hu Hui  Fan Xiao-dong  Cao Zhong-lin 《Polymer》2005,46(22):9514-9522
Novel dendrimer derivatives combining the temperature- and pH-sensitivities are synthesized. At first, polyamidoamine (PAMAM) dendrimers with generations 1-5 are synthesized by the reaction of ethylenediamine with methyl acrylate, and then the dendrimers are acylated by chloroacetyl chloride to obtain PAMAM-Cl, which can act as a macroinitiator for further synthesizing functional dendrimers. For fulfilling this goal, the polymers consisting of a dendritic PAMAM core and poly(N,N-dimethylaminoethyl methacrylate) (PDMA) shell are synthesized by atom transfer radical polymerization (ATRP). Their macromolecular structures are characterized by FTIR, 1H NMR, DSC and particle size analyses, and their aqueous solutions are inspected by UV spectroscopy for understanding their thermo- and pH-sensitivities. The results show that novel dendrimer derivatives exhibit clearly thermo- and pH-respondings in accordance with the change of the environment. Using chlorambucil (CLB) as a model drug, the behaviors of the controlled drug release from polymers with different average graft length of PDMA are studied. The results indicate that the rate of the drug release can be effectively controlled by the pH value.  相似文献   

19.
J.Z YiS.H Goh 《Polymer》2002,43(16):4515-4522
Poly(p-vinylphenol) (PVPh) and poly(N-acryloylmorpholine) (PAcM) form interpolymer complexes in ethanol/water (1:1) solution. However, only ordinary blends are obtained from dimethylformamide solution. Each of the complexes and ordinary blends shows one composition-dependent glass transition temperature, indicating its single-phase nature. Fourier transform infrared spectroscopy and 13C solid-state nuclear magnetic resonance spectroscopy reveal the existence of hydrogen-bonding interactions between the hydroxyl groups of PVPh and the carbonyl groups as well as the ether oxygen of PAcM in the blends and complexes. In addition, X-ray photoelectron spectroscopy shows that the nitrogen atoms in PAcM are also involved in hydrogen-bonding interactions. Measurements of proton spin-lattice relaxation time in the rotating frame, T1ρ(H), reveal that each of the complexes and ordinary miscible blends has one composition-dependent T1ρ(H), indicating an intimate mixing on a scale of about 1.5 nm. The blends show a higher degree of surface enrichment of PVPh than the complexes.  相似文献   

20.
The coil-to-globule and globule-to-coil transition of poly(N-isopropylacrylamide) in aqueous solution had been studied by heating and cooling the sample solution with conventional viscosity measurement. A single chain collapsed globule solution was prepared firstly by adding sodium n-dodecyl sulfate (SDS) into the polymer solution at room temperature, as the chain collapsed to compact globule at higher temperature and then the SDS was removed by electro-dialysis. The viscosity data were analyzed in a quantitative way, which permitted to elucidate the transition temperature and the amount of the water in the collapsed globule precisely.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号