首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
First results are reported regarding the design, fabrication and operation of a DNA biochip based on a semiconductor oxide electrode that employs label-free electrical detection of the DNA hybridization. The same process of DNA functionalisation, including hydroxylation and silanization steps, was performed on two types of semiconductor oxide: Sb doped SnO2 and CdIn2O4 thin films. These oxide electrodes were laboratory-made films deposited on glass substrates using a chemical vapour deposition method, i.e. the aerosol pyrolysis technique. After having characterized some physico-chemical properties of the bare films, the label-free electrical DNA hybridization detection, without redox couple labelling, was performed using electrochemical impedance spectrometry (EIS) before and after hybridization. On both oxides, over a large frequency range, a significant increase in the impedance modulus was obtained. The increase in the case of CdIn2O4 was by a factor of 2.1 ± 0.5 and in the case of Sb doped SnO2 was by a factor of 1.6 ± 0.1. This phenomenon was especially marked on CdIn2O4 thin films, which exhibit a higher sensitivity to the surface event. The DNA hybridization to complementary DNA targets labelled with fluorescent markers was confirmed using fluorescence microscopy.  相似文献   

2.
An electrochemical method for the detection of DNA hybridization using a novel electroactive, cationic, and water-soluble branched polyethyleneimine (BPEI)-cobalt(III)-phenanthroline(phen) polymeric indicator and single-stranded neutral peptide nucleic acid (PNA) probe on the Au electrode was developed. The indicator possesses some free amine groups, as well as cationic cobalt complexes in the polymer chain. It does not bind to neutral PNA capture probe alone. However, the indicator strongly interacts with the negatively charged backbone of the complementary oligonucleotide bound to the PNA probe through electrostatic interactions. The coordination spherical moieties also interact with the probe by embedding into the double-helix structure of PNA-DNA. These two interactions enable transduction of hybridization, producing a clear electrical signal in differential pulse voltammetry (DPV). The correlation against non-complementary DNA, three-base and one-base mismatch DNA was sharp, and the signal of indicator for the target DNA demonstrated a linear relationship within the concentration range of 5.0 × 10−9 to 2.5 × 10−7 M (R = 0.9940) with a detection limit of 5.6 × 10−10 M. These studies showed that the novel polymeric indicator and single-stranded PNA probe could be used to fabricate an electrochemical biosensor for DNA detection. This technique can provide an alternative route for expanding the range of detection methods available for DNA hybridization.  相似文献   

3.
An electrochemical DNA biosensor (EDB) was prepared using an oligonucleotide of 21 bases with sequence NH2-5′-GAGGAGTTGGGGGAGCACATT-3′ (probe DNA) immobilized on a novel multinuclear nickel(II) salicylaldimine metallodendrimer on glassy carbon electrode (GCE). The metallodendrimer was synthesized from amino functionalized polypropylene imine dendrimer, DAB-(NH2)8. The EDB was prepared by depositing probe DNA on a dendrimer-modified GCE surface and left to immobilize for 1 h. Voltammetric and electrochemical impedance spectroscopic (EIS) studies were carried out to characterize the novel metallodendrimer, the EDB and its hybridization response in PBS using [Fe(CN)6]3−/4− as a redox probe at pH 7.2. The metallodendrimer was electroactive in PBS with two reversible redox couples at E°′ = +200 mV and E°′ = +434 mV; catalytic by reducing the Epa of [Fe(CN)6]3−/4− by 22 mV; conducting and has diffusion coefficient of 8.597 × 10−8 cm2 s−1. From the EIS circuit fitting results, the EDB responded to 5 nM target DNA by exhibiting a decrease in charge transfer resistance (Rct) in PBS and increase in Rct in [Fe(CN)6]3−/4− redox probe; while in voltammetry, increase in peak anodic current was observed in PBS after hybridization, thus giving the EDB a dual probe advantage.  相似文献   

4.
Anatase TiO2 colloidal dispersions were obtained by hydrothermal synthesis at 200 °C from titanium isopropoxide gels modified with acetic acid in the presence of a non-ionic surfactant. Absolute ethanol, anhydrous terpineol and ethyl cellulose were added to this anatase dispersion resulting in a 23 wt% TiO2 paste. Mesoporous films for application as working electrodes in dye-sensitized solar cells were prepared by the screen-printing method, yielding reproducible films with thicknesses about 10 μm and desired porosity levels in a single printing operation. An average energy conversion efficiency of 5.2%, and a fill factor of 0.66 were achieved with anatase particle sizes ranging between 15 and 20 nm. The reproducibility of the results was confirmed by electrochemical impedance spectroscopy analysis.  相似文献   

5.
A sensitive and novel DNA electrochemical biosensor for the detection of the transgenic plants gene fragment by electrochemical impedance spectroscopy (EIS) was presented. The well-dispersed carboxylic group-functionalized single-walled carbon nanotubes (SWNTs) were dripped onto the carbon paste electrode (CPE) surface firstly, and poly-l-lysine films (pLys) were subsequently electropolymerized by cyclic voltammetry (CV) to prepare pLys/SWNTs/CPE. The morphology of pLys/SWNTs films was examined using a field emission scanning electron microscope (SEM). The pLys/SWNTs films modified electrode exhibited very good conductivity. DNA probes were easily immobilized on the poly-l-lysine films via electrostatic adsorption. The hybridization events were monitored with electrochemical impedance spectroscopy using [Fe(CN)6]3−/4− as indicator. The PAT gene fragment from phosphinothricin acetyltransferase gene was detected by this DNA electrochemical sensor. The dynamic detection range of this sensor to the PAT gene fragment was from 1.0 × 10−12 to 1.0 × 10−7 mol/L. A detection limit of 3.1 × 10−13 mol/L could be estimated. The PCR amplification of NOS gene from the sample of a kind of transgenic modified bean was also detected satisfactorily by EIS.  相似文献   

6.
A novel and sensitive electrochemical DNA biosensor based on electrochemically fabricated polyaniline nanowire and methylene blue for DNA hybridization detection is presented. Nanowires of conducting polymers were directly synthesized through a three-step electrochemical deposition procedure in an aniline-containing electrolyte solution, by using the glassy carbon electrode (GCE) as the working electrode. The morphology of the polyaniline films was examined using a field emission scanning electron microscope (SEM). The diameters of the nanowires range from 80 to 100 nm. The polyaniline nanowires-coated electrode exhibited very good electrochemical conductivity. Oligonucleotides with phosphate groups at the 5′ end were covalently linked onto the amino groups of polyaniline nanowires on the electrode. The hybridization events were monitored with differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. The approach described here can effectively discriminate complementary from non-complementary DNA sequence, with a detection limit of 1.0 × 10−12 mol l−1 of complementary target, suggesting that the polyaniline nanowires hold great promises for sensitive electrochemical biosensor applications.  相似文献   

7.
Chengguo Hu 《Electrochimica acta》2006,51(15):3013-3021
MWNTs can be conveniently dispersed in Nafion solution on the basis of the special interactions between the sidewall of MWNTs and the hydrophobic domains of Nafion. Casting of the resulting mixture on electrode surfaces produced uniform composite films having wide electroanalytical applications. In this work, the electrochemical properties of the MWNTs-Nafion composite film on a glassy carbon electrode were systematically investigated by various electrochemical methods using incorporated europium(III) ions (Eu3+) as the probe. The voltammetric studies showed that the increase of MWNTs concentration in the composite film could effectively improve the redox currents of Eu3+ and reduce the peak separation, whereas the increase of Nafion concentration generally increased both the redox currents and the peak separation. These results suggested the different roles of MWNTs and Nafion in the composite films. The electrochemical impedance spectroscopic (EIS) investigations showed that MWNTs mainly contributed to the charge transfer and mass transfer processes of the composite film through the increases of the electrode/electrolyte interfacial area and the film porosity while Nafion generally dominated the mass transport from the solution into the film via ion exchange. The potential application of the sensitive response of Eu3+ at the MWNTs-Nafion composite film in electroanalytical chemistry was evaluated. In the range of 0.04-100 μM, the concentration of Eu3+ showed excellent linear relationships with the differential pulse voltammetric response with a low detection limit of 10 nM (S/N = 3) for 60 s accumulation at −0.1 V.  相似文献   

8.
The Streptococcus pneumoniae detection plays an important role in the diagnosis and monitoring of pneumococcal diseases. A genosensor based on graphite electrodes modified with polymer was developed for such detection. First, the poly(4‐aminophenol) film was electrochemically deposited on a graphite electrode. Afterward, an S. pneumoniae‐specific oligonucleotide (Strep1), isolated from conserved regions of the bacterial genome, was immobilized onto the modified electrode surface and used for the test with complementary target oligonucleotide (Strep2) or genomic DNA. The genosensor was evaluated using electrochemical techniques and atomic force microscopy. Poly(4‐aminophenol) film caused an increase in probe immobilization, monitoring the guanine oxidation peak. The detection limits obtained using differential pulse voltammetry and electrochemical spectroscopy impedance were 54 and 28 ng mL?1, respectively. The novel genosensor was efficient for the immobilization and detection of S. pneumoniae genomic DNA. POLYM. ENG. SCI., 58:1308–1314, 2018. © 2017 Society of Plastics Engineers  相似文献   

9.
A novel Au nanoparticles (Au-NPs)-based protocol for DNA hybridization detection based on assembly of alternating DNA and poly(dimethyldiallylammonium chloride) (PDDA) multilayer films by layer-by-layer (LBL) electrostatic adsorption has been studied. Electrochemical impedance spectroscopy (EIS) and UV-vis absorbance measurements were used to study the film assembly. All the results indicate that the uniform multilayer can be obtained on the polypyrrole (PPy) coated electrode surface and the hybridization reaction can be amplified by the layer-by-layer progress. The hybridization was detected by the reductive signal of Au-NPs and nonspecific adsorption was greatly eliminated by an unrelated DNA sequence to the target DNA. Under optimum conditions, a significant sensitivity enhancement had been obtained, and the detection limit was down to 3.20 × 10−14 M when 6 layers assembled. The DNA biosensor has good stability and reproducibility.  相似文献   

10.
We report a simple method for the stable dispersion of multi-walled carbon nanotubes (MWNTs) in water by vanillin and controllable surface addition onto carbon fiber microelectrodes (CFE) via electropolymerization. We have characterized these polyvanillin-carbon nanotube (PVN-MWNT) composite films with techniques including scanning electron microscopy (SEM), infrared spectroscopy (IR) and voltammetry. These investigations showed that the films have a uniform porous nanostructure with a large surface area. This PVN-MWNT composite-modified CFE (PVN-MWNT/CFE) exhibited a sensitive response to the electrochemical oxidation of nitrite. Under optimal working conditions, the oxidation peak current of nitrite linearly increased with its concentration in the range of 0.2 μM-3.1 mM, with the system exhibiting a lower detection limit of 50 nM (S/N = 3). We successfully applied the PVN-MWNT/CFE system to the determination of nitrite from lake water. The efficient recovery of nitrite indicated that this electrode was able to detect nitrite in real samples.  相似文献   

11.
In this work, a highly sensitive electrochemical sensor for the determination of tryptophan (Trp) was fabricate by electrodeposition of gold nanoparticles (AuNPs) onto carbon nanotube (CNT) films pre-cast on a glassy carbon electrode (GCE), forming an AuNP-CNT composite-modified GCE (AuNP-CNT/GCE). Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used for the surface analysis of the electrode. The results indicate that the hybrid nanomaterials induced a substantial decrease in the overpotential of the Trp oxidation reaction and exhibited a remarkable synergistic effect on the electrocatalytic activity toward the oxidation of Trp. In phosphate buffer solution (pH 7.4), the modified electrode showed excellent analytical performance for the amperometric determination of Trp. The peak currents possess a linear relationship with the concentration of Trp in the range of 30 nM to 2.5 μM, and the detection limit is 10 nM (S/N = 3). In addition, the modified electrode was used to determine Trp concentration in pharmaceutical samples with satisfactory results.  相似文献   

12.
A sensitive electrochemical detection method was developed involving multiwalled carbon nanotubes (MWCNTs) covalently modified with osmium-based redox polymer. The polycationic redox polymer, poly[4-vinylpyridine Os(bipyridine)2Cl]-co-ethylamine (POs-EA), was first synthesized and covalently attached to MWCNTs. The redox polymer modified MWCNTs were then trapped in a hydrogel formed from polyethyleneglycol diacrylate (PEG-DA) using 1-phenyl-2-hydroxy-2-methyl-1-propanone as a photoinitiator. Upon exposure to aqueous media, the gel swelled to allow movement of analytes in and out of the gel without having any effect on the redox polymer modified nanotube signal. Cyclic voltammetry showed reversible pairs of oxidation-reduction peaks at 0.35 V (vs Ag/AgCl) corresponding to the OsII/OsIII. This assembly was able to catalytically oxidize both acetaminophen and ascorbic acid (AA). Amperometric data showed a linearity between 0 and 100 μM (R2 of 0.999, n = 10) 0.5 mV vs Ag/AgCl (sensitivity 0.003 μA/μM) for ascorbic acid, while for acetaminophen the linearity was between 0 and 1.5 μM (R2 of 0.9999, n = 8) with a sensitivity of 65 μA/μM. This sensing system was found to exhibit remarkable stability over several weeks with excellent reproducibility.  相似文献   

13.
We outline here the fabrication of a sensitive electrochemical DNA biosensor for the detection of sequence-specific target DNA. Zinc oxide nanowires (ZnONWs) were first immobilized on the surface of a glassy carbon electrode. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups were then dropped onto the surface of the ZnONWs. Gold nanoparticles (AuNPs) were subsequently introduced to the surface of the MWNTs/ZnONWs by electrochemical deposition. A single-stranded DNA probe with a thiol group at the end (HS-ssDNA) was covalently immobilized on the surface of the AuNPs by forming an Au-S bond. Scanning electron microscopy (SEM) and cyclic voltammetry (CV) were used to investigate the film assembly process. Differential pulse voltammetry (DPV) was used to monitor DNA hybridization by measuring the electrochemical signals of [Ru(NH3)6]3+ bounding to double-stranded DNA (dsDNA). The incorporation of ZnONWs and MWCNTs in this sensor design significantly enhances the sensitivity and the selectivity. This DNA biosensor can detect the target DNA quantitatively in the range of 1.0 × 10−13 to 1.0 × 10−7 M, with a detection limit of 3.5 × 10−14 M (S/N = 3). In addition, the DNA biosensor exhibits excellent selectivity, even for single-mismatched DNA detection.  相似文献   

14.
SnOx thin films were prepared by reactive radio frequency magnetron sputtering with different sputtering powers. X-ray photoelectron spectroscopy suggested that all the films have similar chemical stoichiometry as SnO1.5. X-ray diffraction and transmission electro microscopy results showed that crystal size of the SnOx thin films gradually increases with increase of sputtering power from 50 to 150 W. Cyclic voltammetry and galvanostatic charge/discharge cycling measurements indicated that the electrochemical properties of SnOx films strongly rely on their crystal sizes as well as surface morphologies. The SnOx film deposited at sputtering power of 120 W exhibits the best electrochemical performances. It could deliver a reversible capacity of 670 μAh cm−2 μm−1 at 50 μA cm−2 in the voltage range of 0.1-1.2 V up to 50 cycles.  相似文献   

15.
LiCoO2 thin films were deposited using radio frequency (rf) magnetron sputtering system on stainless steel substrates. Different rf powers, up to 150 W, were applied during deposition. The as-deposited films exhibited (1 0 1) and (1 0 4) preferred orientation and the nanocrystalline film structure was enhanced with increasing rf power. The film crystallinity was examined using X-ray diffraction, Raman scattering spectroscopy and transmission electron microscopy. The compositions of the films were determined by inductively coupled plasma-mass spectroscopy. The average discharge capacity of as-deposited films is about 59 μAh/(cm2 μm) for cut-off voltage range of 4.2 and 3.0 V. From the electrochemical cycling data, it is suggested that as-deposited LiCoO2 films with a nanocrystalline structure and a favorable preferred orientation, e.g. (1 0 1) or (1 0 4) texture, can be used without post-annealing at high temperatures for solid-state thin film batteries.  相似文献   

16.
In this work, we synthesized a type of compound, MWCNTs-CONH-(CH2)2-SH, via carboxylation, and investigated a thickness-tunable multilayer films DNA biosensor built by layer-by-layer (LBL) covalent attachment of gold nanoparticles (GNPs) and multi-walled carbon nanotubes (MWCNTs) on an Au electrode. Fourier transform infrared (FT-IR) spectra were used to identify the products formed in the step of carboxylation; scanning electron microscopy (SEM) and cyclic voltammetry (CV) were used to study the film assembly process. The hybridization events were monitored through measurement the signal of intercalated doxorubicin by differential pulse voltammetry (DPV), and the oxidation peak currents show a good linear relationship with the logarithm of the concentration of target DNA from 5.0 × 10−10 to 1.0 × 10−11 M with a detection limit of 6.2 pM. The improved DNA biosensor has a good stability and reproducibility.  相似文献   

17.
Investigation of thin sputtered Mn films for electrochemical capacitors   总被引:2,自引:0,他引:2  
Pseudocapacitive manganese oxide films have been synthesized by anodic oxidation of metallic films deposited by sputtering. Results are presented from an electrochemical investigation into properties of these thin sputtered manganese films. Mn films with thickness ranging from 20 to 200 nm have been sputtered onto Pt coated Si wafers in an Argon atmosphere. Electrochemical oxidation converts the metal film into a porous, dendritic structure which displays significant pseudocapacitance. We have observed a specific capacitance (Cs) of 700 F/g when cycled very slowly at a constant current density of 160 μA/cm2. The same films probed by cyclic voltammetry (CV) at a rate of 5 mV/s yielded a lower specific capacitance of 400-450 F/g. Post-oxidation material loading was measured to be in the range of 25-75 μg/cm2.  相似文献   

18.
J. Kafka 《Electrochimica acta》2008,53(25):7467-7474
This paper describes a label-free detection system for DNA strands based on gold electrodes and impedance measurements. A single-stranded 18 mer oligonucleotide (ssDNA) was immobilised via a thiol linker on gold film electrodes and served as probe DNA. Residual binding places were filled with mercaptobutanol. The sensor surface clearly distinguished between complementary and non-complementary target ssDNA. Additionally, detection of single base pair mismatches was possible. The electrode was impedimetrically characterised in the presence of the redox system ferri/ferrocyanide before and after DNA hybridisation. Impedance analysis showed that the charge transfer resistance, Rct, was increasing after DNA duplex formation, whereas the capacitive properties remain rather unaltered. The relative change of Rct was used as sensor parameter. Concentrations in the nanomolar range have been detected by the system. The sensor was reusable because a denaturation protocol allowed effective double strand dissociation without changing the surface properties of the electrode substantially. The time for DNA detection have been reduced to about 15 min including regeneration. The sensor signal was amplified by about 20% after binding of a negatively charged molecule to the formed DNA duplex. The sensor was also capable of sensing longer target ssDNA strands as shown with 25 mer and 37 mer oligonucleotides.  相似文献   

19.
Cyclic voltammetry (CV) was used to investigate electrochemical behavior of sodium tanshinone IIA sulfonate (STS) and the interaction between STS and salmon sperm DNA. STS had excellent electrochemical activity on the glassy carbon electrode (GCE) with a couple reversible redox peaks. In pH 4.0 phosphate buffer solution (PBS), the binding ratio between STS and salmon sperm DNA was calculated to be 1:1 and the binding constant was 1.67 × 104 L/mol. A chronic myelogenous leukemia (CML, Type b3a2) DNA biosensor was developed by immobilizing covalently single-stranded CML DNA fragment to a modified GCE. The surface hybridization of the immobilized single-stranded CML DNA fragment with its complementary DNA fragment was evidenced by electrochemical methods using STS as a novel electrochemical indicator, with a detection limit of 6.7 × 10−9 M and a linear range from 2.0 × 10−8 M to 2.0 × 10−7 M. Selective determination of complementary ssDNA was achieved using differential pulse voltammetry (DPV).  相似文献   

20.
The electron field emission (EFE) and electrochemical (EC) properties of N2(10%)-incorporated ultra-nanocrystalline diamond (N2-UNCD) films were investigated. Microstructure examination using TEM indicates that incorporating the N2 species without the substrate heating induced the presence of stacking faults, which can be effectively suppressed by growing the films at elevated temperature. While the synthesis of N2-UNCD without substrate heating can efficiently enhance the EC properties (large potential window with smaller background current) of the films, the EFE behavior of the films can be improved only when the films were grown at an elevated temperature. Moreover, coating the conducting N2-UNCD on Si-tips can further enhance the EFE and CV behaviors, viz. (E0)tip = 5.0 V/μm with (Je)tip = 0.28 mA/cm2 at 15 V/μm applied field and ΔEp = 0.5 V with redox peak 170 μA were achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号