首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrochemical behavior of germanium irreversibly adsorbed at stepped surfaces vicinal to the Pt(1 0 0) pole is reported. The process taking part on the (1 0 0) terraces is evaluated from charge density measurements and calibration lines versus the terrace dimension are plotted. On the series Pt(2n − 1,1,1) having (1 1 1) monoatomic steps, the charge involved in the redox process undergone by the irreversibly adsorbed germanium is able to account for (n − 0.5) terrace atoms, thus suggesting some steric difficulties in the growth of the adlayer on the (1 0 0) terraces. Conversely, no steric problems are apparent in the series Pt(n,1,0) in which more open (1 0 0) steps are present on the (1 0 0) terraces. In this latter case the charge density under the germanium redox peaks is proportional to the number of terrace atoms. Some comparison is made with other stepped surfaces to understand the behavior and stability of germanium irreversibly adsorbed on the different platinum surface sites.  相似文献   

2.
We recently showed nickel-underpotential deposition (Ni-UPD) occurs on polycrystalline or single crystal platinum electrodes in acidic media. Whereas the decoupling of the nickel and hydrogen adsorption/desorption peaks is difficult for low pH, these processes can be better separated for higher pH values, typically pH > 3. However, even for platinum single crystals, high pH solutions do not enable to sufficiently separate nickel from hydrogen phenomena. As a result, electrochemistry alone cannot yield important information about Ni-UPD, such as the formal partial charge number (valency of electrosorption) and the role of the sulphate or hydrogen sulphate anions.So, we decided to couple cyclic voltammetry to electrochemical quartz crystal microbalance (EQCM). EQCM measurements enable to decorrelate the simultaneous hydrogen and nickel adsorption/desorption peaks, which we could not attempt solely with electrochemistry. The coupling between gravimetric and electrochemical measurements allows us to detect the contribution of the anions and thus to isolate that of nickel: nickel coverage can then be determined. Nearly 4/5 NiUPD monolayer (θNi ≈ 0.8) over platinum is reached at nickel equilibrium potential for high pH solutions (5.5). The QCM and electrochemistry coupling further allows the determination of nickel formal partial charge number: ιNi,EQCM = 1.3 ± 0.13. Direct electrochemistry measurements (Swathirajan and Bruckenstein method) yield: ιNi,Pt(poly) = 1.5 ± 0.17. These two values are close, which validates the electrochemical method for the nickel/platinum system. In consequence, we used Swathirajan and Bruckenstein method for Pt(1 1 0)-(1 × 2) crystal and found: ιNi,Pt(1 1 0) ≈ 1.4 ± 0.1. Whatever the system (NiUPD/Pt(poly) or NiUPD/Pt(1 1 0)-(1 × 2)) or the experimental technique, nickel formal partial charge number is lower than nickel cation charge: ιNi < zNi = 2. In consequence, upon underpotential deposition on platinum surfaces, nickel cations discharge and then undergo additional charge exchange processes, such as anion (or water) adsorption, resulting in apparent partial nickel cation discharge. Moreover, NiUPD/Pt(1 1 0) surface displays high activity towards COad oxidation reaction. We explain such positive effect by the possible existence of a bifunctional mechanism in which oxygenated-species-covered NiUPD adatoms provide the oxygen atom to COad?Pt species, enabling its facile oxidation.  相似文献   

3.
Dipendu Saha 《Carbon》2010,48(12):3471-6786
C60 buckyball molecules were partially truncated by a controlled oxidation at 400 °C and 2 bar oxygen pressure to create unique pore textures suitable for hydrogen adsorption. Pore textural analysis and density measurement confirmed the success of cage-opening and the creation of pore structures accessible to gas molecules. The specific surface area of the C60 sample were increased from below detection to a measurable value (BET: 85 m2/g). Raman spectral study showed that the three main bands of C60, Hg(1), Ag(1) and Ag(2) remained and significant defects were created after the C60 fullerenes were partially oxidized. XRD and SEM measurements suggested that the C60 fullerenes lost their crystallinity and the crystal surfaces were etched after the oxidation step. Hydrogen adsorption on the C60 fullerenes were measured at three temperatures (77, 143 and 228 K) and hydrogen pressures up to 150 bar. Hydrogen adsorption capacity on C60 fullerenes at 77 K at 120 bar was more than tripled (from 3.9 to 13 wt.%) after the C60 fullerenes were partially oxidized. The average heat of adsorption of hydrogen on the partially oxidized C60 fullerene molecules (2.38 kJ/mol) is within the range of the reported values of heat of adsorption on other porous adsorbents.  相似文献   

4.
The electrochemical reduction of nitrate ion was studied by cyclic voltammetry on Pt(1 1 1) and [n(1 1 1) × (1 1 1)] stepped Pt surfaces, where n (=14, 10, 7, 6, 5, 4, 3, 2) is the number of terrace atoms, in 0.1 M HClO4 + 10 mM KNO3. The electrocatalytic nitrate reduction was found to hardly proceed on Pt(1 1 1) in the hydrogen adsorption region, while the electrocatalytic activity was improved with the increase in the step density. Inactivation was observed in the presence of adsorbed hydrogen or nitrate-derived reduced adsorbate, i.e. adsorbed NO, on (1 1 1) step sites. It was, therefore, concluded that the electrocatalytically active NO3 species does not adsorb on the (1 1 1) terraces but on the (1 1 1) monoatomic steps. The nitrate reduction current increased with the step density in a non-linear relationship. The overall current density at 0.21 V (RHE) corresponding to the peak potential of the main electrocatalytic nitrate reduction wave which was maximum at n = 2, abruptly increased with short terraces, i.e. n < 5, where the current wave of adsorbed hydrogen on the Pt stepped surface with comparatively narrow (1 1 1) terraces, denoted as Hnt, also appeared unmodified for n < 5 on voltammograms recorded in 0.1 M HClO4 in the absence of nitrate.  相似文献   

5.
Electroreduction kinetics of the peroxodisulfate anions on the electrochemically polished Bi(1 1 1) single crystal electrode has been studied by impedance spectroscopy. Influence of the electrode potential, reaction intermediates, base electrolyte and reactant concentrations on the kinetic parameters of electroreduction has been established. Systematic analysis of the fitting results demonstrates the noticeable influence of adsorption of the reaction intermediate or reactant on the electroreduction rate of the S2O82− anions at the Bi(1 1 1) electrode. In the region of so-called “current pits” in the cyclic voltammetry curves, obtained by rotating disc electrode method, the mixed kinetics, i.e. the adsorption and “true” charge transfer limited steps have been established by impedance spectroscopy.  相似文献   

6.
The structure sensitivity of the reduction of nitrate has been studied on a series of single-crystal platinum electrodes by cyclic voltammmetry and in situ FTIRAS in sulfuric and perchloric acid solutions. The nitrate reduction is a structure-sensitive reaction on single-crystal platinum electrodes. However, this structure sensitivity is essentially controlled by other species (hydrogen, sulfate) that interact strongly with the electrode surface rather than by a structure-sensitive nitrate adsorption, dissociation or reduction.Voltammetric and spectroscopic data point to adsorbed nitric oxide (NO) as the main stable intermediate of the nitrate reduction to ammonia. No evidence for the formation of N2O was found. On surfaces with sufficiently wide (1 1 1) terraces in the absence of specifically adsorbed sulfate, an oxidizable nitrate reduction product is detected voltammetrically, which may tentatively be attributed to the formation of a small amount of hydroxylamine earlier during the voltammetric scan.  相似文献   

7.
T. Jiang 《Electrochimica acta》2007,52(13):4487-4496
The kinetics of the oxygen reduction reaction (orr) on Cu(h k l) surfaces are investigated in perchloric acid and sulfuric acid solutions using rotating ring disk electrode (RRDCu(h k l)E). Parameters, such as reaction order, kinetic current, rate constant, Tafel slopes as well as the number of electrons transferred are determined. The variation in the activity and reaction pathway with the crystal faces in different electrolytes is related to the surface characteristics of Cu(h k l) and the structure-sensitive inhibiting effect of the adsorbed anions on their surfaces. In 0.1 M HClO4, the difference in activity is clearly observed on Cu(h k l) surfaces (Cu(1 0 0) > Cu(1 1 1) although it is relatively small). The higher activity of Cu(1 0 0) arises from its more open characteristics which may facilitate the co-adsorption of O2. On the other hand, the adsorption of oxygenated species on Cu(1 1 1) at E > −0.35 V induces a 2 e pathway; while a 4 e reduction is observed on Cu(1 0 0) in the entire potential region (−0.70 V < E < −0.10 V). In 0.5 M H2SO4, the sequence in activity between Cu(1 1 1) and Cu(1 0 0) varies with the potentials, i.e., Cu(1 0 0) is initially more active than Cu(1 1 1) at −0.35 V < E < −0.15 V, however, the reversal in the activity between Cu(1 1 1) and Cu(1 0 0) is observed at more negative potentials (−0.45 V < E < −0.35 V). The desorption of strongly adsorbed (bi)sulfate anions on Cu(1 1 1) induces the 2 e reduction via peroxide formation, however, a 4 e reduction is dominant on the Cu(1 0 0) surfaces. The major effect of (bi)sulfate anions and oxygenated species on the orr kinetics and reaction pathway on Cu(h k l) surfaces is the blocking of active copper sites for the adsorption of O2 molecules.  相似文献   

8.
The electrochemical oxidation of CO has been studied on Pt(S)[(n − 1)(1 0 0) × (1 1 0)] electrodes to investigate the effect of the step density in the reaction. This series shows two different trends for long (n ≥ 7) and short terraces. For long terraces, the voltammetric peak shifts towards higher potential as the step density increases, unlike the behaviour observed for other stepped surfaces, which exhibit the opposite behaviour in agreement with the Smoluchowski effect. For short terraces, the “normal” behaviour is observed, that is, as the step density increases the peak shifts towards lower potentials. Chronoamperometric measurements were used to determine rate constants and Tafel slopes using the mean field Langmuir-Hinselwood kinetics. Rate constants follow the same trends as the peak potentials in voltammetry. A Tafel slope of 75 ± 4 mV has been obtained for the surfaces with long terraces whereas a value of the surfaces with short terraces showed a value of 100-120 mV is obtained. This change of slopes is interpreted as a change in the electrochemical behaviour of the species involved in the mechanism, probably, a change in the adsorption isotherm of adsorbed OH. Pt(5 1 0) electrode exhibits an intermediate behaviour between those of long and short terraces with two different peaks that can be associated with both behaviours previously described.  相似文献   

9.
This paper is focused on the in situ radiotracer and voltammetric studies of the induced HSO4/SO42− adsorption at Pt(poly) and Pt(1 1 1) surfaces in 0.1 mol dm−3 HClO4 solution in the course of Cr(VI) electroreduction. Besides this, the sorption behavior of HSO4/SO42− ions on bare Pt(poly) and Pt(1 1 1) electrodes is compared and discussed. From the experimental results it can be stated that: (i) although the extent of bisulfate/sulfate adsorption is strongly dependent upon the crystallographic orientation of Pt surfaces, the maximum coverage on the Pt(1 1 1) does not exceed 0.2 monolayer; (ii) the Cr(VI) electroreduction on both poly- and (1 1 1) oriented platinum proceeds via a ce (chemical-electron-transfer) mechanism to yield Pt surfaces covered with intermediate surface adlayers containing Cr(VI) particles (and reduced Cr-containing adspecies) and ‘strongly bonded’ HSO4/SO42− ions; (iii) while the coverage of platinum surfaces by the intermediate complexes formed in the course of Cr(VI) electroreduction at E > 0.20 V is basically independent of the crystallographic orientation of the Pt electrode, the onset for rapid Cr(VI) reduction is highly affected by the nature and crystallographic orientation of the electrode.  相似文献   

10.
The reduction of CO2 on bismuth modified Pt(1 1 0) single crystal surfaces has been studied voltammetrically. The effect of bismuth and the amount of formed CO species on the rate of hydrogen evolution has also been investigated. A decrease in the rate of CO2 reduction is observed due to the modification of the surface with bismuth adsorption. This decrease goes beyond the simple third body effect expected from the blockage of active sites on the platinum surface after bismuth adsorption. However, the hydrogen evolution reaction is relatively insensitive to the presence of adsorbed species, in contrast with previous result reported for Pt(1 1 1) and Pt(1 0 0) surfaces.  相似文献   

11.
M. Hara 《Electrochimica acta》2007,52(18):5733-5748
The electrochemical properties of Pd(1 1 1), Pd(1 0 0) and Pd(1 1 0) single crystal bead electrodes, prepared by a novel electron beam heating and inductive annealing technique, have been characterized in 0.1 M sulfuric acid and 0.1 M perchloric acid by cyclic voltammetry and chronoamperometry. Hydrogen and (hydrogen) sulfate adsorption as well as surface oxidation were found to depend strongly on the crystallographic orientation and the nature of the electrolyte. The combination of charge displacement and voltammetric experiments allowed the determination of the potentials of zero total charge (Epztc) of Pd(1 1 1) and Pd(1 0 0). The values of Epztc in sulfuric acid were found to be more negative than in perchloric acid. The estimation of Epztc for Pd(1 1 0) was hampered by the superposition with hydrogen absorption. The electro-oxidation of irreversible adsorbed carbon monoxide monolayers was studied on the three low-index Pd electrodes. The onset potential of the CO oxidation reaction follows the sequence Pd(1 0 0) < Pd(1 1 0) < Pd(1 1 1). Chronoamperometric experiments revealed a pronounced structure sensitivity of the reaction kinetics. The processes involved are determined by nucleation of oxygen-containing species on defect (step) sites and by slow diffusion of COads on (1 1 1) terrace sites.  相似文献   

12.
The adsorption of phosphate anions from phosphate solutions at poly-oriented and single-crystal platinum electrodes, primarily Pt(1 1 1), was studied over a wide range of pH by cyclic voltammetry. The features observed at the poly-oriented Pt electrode in phosphate solution may be related to the different crystalline facets, the (1 1 1) orientation presenting the most significant behavior in terms of phosphate adsorption. On the reversible hydrogen electrode (RHE) scale, the phosphate adsorption strength decreases with increasing alkalinity of the solution. Qualitatively, three different pH regions can be distinguished. At pH < 6 only a broad reversible peak is observed, corresponding to the adsorption of H2PO4 and further deprotonation to adsorbed HPO4. For 6 < pH < 11 a butterfly feature followed by one or two anodic peaks (depending on scan rate) is observed, ascribed to the adsorption of HPO4 followed by its subsequent deprotonation to adsorbed PO43−. The splitting into two or three voltammetric features, and the irreversibility of the two features at more positive potential, is ascribed to the deprotonation reaction leading to a surface species (i.e. phosphate) which needs to change its surface coordination. At pH > 11 a reversible pre-wave and a sharp spike are observed, ascribed to the co-adsorption of phosphate and hydroxide.  相似文献   

13.
Adsorption of adenine on Au(1 1 1) and Au(1 0 0) electrodes is studied by cyclic voltammetry, impedance and chronoamperometric measurements in 0.1 M and 0.01 M KClO4 and in 0.5 M NaF solutions. The experiments performed with flame-annealed electrodes at different contact potentials, scan potential limits and scan rates, suggest different adsorption behaviour on the unreconstructed and reconstructed surface domains. This is confirmed by comparing the results obtained with electrochemically annealed unreconstructed and with flame-annealed reconstructed surfaces. In both cases the initial electrode surface state is characterised by the Epzc values. The adsorption on reconstructed surfaces takes place at more positive potentials than on the unreconstructed surfaces and induces the lifting of the reconstruction.The thermodynamic analysis is performed on the chronoamperometric data for adenine desorption on well characterised unreconstructed Au(1 1 1) surfaces. To this end a new methodology of the chronoamperometric experiments is introduced. Quantitative thermodynamic adsorption parameters such as surface tension, Gibbs surface excess, Gibbs energy of adsorption, potential versus Gibbs excess slope and electrosorption valency are determined. Weak chemisorption of adenine is inferred with a molecular orientation independent on the coverage and on the electrode potential. It is proposed that adsorbed adenine molecules adopt a tilted orientation at the surface to facilitate the coordination to the gold atoms.  相似文献   

14.
The electrochemical properties of bismuth and germanium irreversibly adsorbed on platinum electrodes have been used to screen the surface domains of polycrystalline electrodes. As revealed by the use of stepped surfaces, bismuth adsorbed on (1 1 1) terrace sites shows a redox peak at 0.63 V, whose charge is proportional to the number of (1 1 1) terrace sites, without any interference from bismuth adsorbed on any other site. For the characterization of (1 0 0) terrace sites, adsorption of germanium can be used, since the adatoms adsorbed on the (1 0 0) terrace sites show a redox peak at 0.55 V. Although no other peak is found in this potential region for the germanium adsorbed on other sites, other contributions may give rise to an increase in the current in this region. After the appropriate corrections, the charge for bismuth and germanium redox process in the selected region is proportional to the number of terrace sites with (1 1 1) and (1 0 0) symmetry, respectively. These relationships can be used to characterize the bidimensional domains of any platinum electrode. Four different platinum nanoparticle electrodes were characterized and the results were used to understand their behaviour towards ammonia oxidation.  相似文献   

15.
LaNiO3 thin films were deposited on SrLaAlO4 (1 0 0) and SrLaAlO4 (0 0 1) single crystal substrates by a chemical solution deposition method and heat-treated in oxygen atmosphere at 700 °C in tube oven. Structural, morphological, and electrical properties of the LaNiO3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM), and electrical resistivity as temperature function (Hall measurements). The X-ray diffraction data indicated good crystallinity and a structural preferential orientation. The LaNiO3 thin films have a very flat surface and no droplet was found on their surfaces. Samples of LaNiO3 grown onto (1 0 0) and (0 0 1) oriented SrLaAlO4 single crystal substrates reveled average grain size by AFM approximately 15–30 nm and 20–35 nm, respectively. Transport characteristics observed were clearly dependent upon the substrate orientation which exhibited a metal-to-insulator transition. The underlying mechanism is a result of competition between the mobility edge and the Fermi energy through the occupation of electron states which in turn is controlled by the disorder level induced by different growth surfaces.  相似文献   

16.
The current study is concerned with the preparation and characterization of tantalum oxide-loaded Pt (TaOx/Pt) electrodes for hydrogen spillover application. XPS, SEM, EDX and XRD techniques are used to characterize the TaOx/Pt surfaces. TaOx/Pt electrodes were prepared by galvanostatic electrodeposition of Ta on Pt from LiF-NaF (60:40 mol%) molten salts containing K2TaF7 (20 wt%) at 800 °C and then by annealing in air at various temperatures (200, 400 and 600 °C). The thus-fabricated TaOx/Pt electrodes were compared with the non-annealed Ta/Pt and the unmodified Pt electrodes for the hydrogen adsorption/desorption (Hads/Hdes) reaction. The oxidation of Ta to the stoichiometric oxide (Ta2O5) increases with increasing the annealing temperature as revealed from XPS and X-ray diffraction (XRD) measurements. The higher the annealing temperature the larger is the enhancement in the Hads/Hdes reaction at TaOx/Pt electrode. The extraordinary increase in the hydrogen adsorption/desorption at the electrode annealed at 600 °C is explained on the basis of a hydrogen spillover-reverse spillover mechanism. The hydrogen adsorption at the TaOx/Pt electrode is a diffusion-controlled process.  相似文献   

17.
The thermodynamics and kinetics of adsorption of Pt(cod)me2 onto resorcinol-formaldehyde aerogel (RFA) from supercritical carbon dioxide (scCO2) was investigated by using high performance liquid chromatography (HPLC) to measure Pt(cod)me2 concentrations in the fluid phase. It was found that the adsorption isotherms of Pt(cod)me2 at 35 °C for different CO2 pressures could be represented by modified Langmuir isotherms. The kinetics of adsorption was determined by following the Pt(cod)me2 uptake of the RFA spheres; these data correspond closely to the behavior from a mass transfer model based on diffusion within the pore volume with the assumption of local equilibrium at the solid-fluid interface. The adsorbed Pt(cod)me2 molecules were reduced at atmospheric pressure under flowing hydrogen at 200 °C. The resultant Pt nanoparticles were distributed uniformly on the surface and had narrow size distributions. The average particle size of the nanoparticles increased with platinum loading from 2.0 nm at 10 wt.% to 3.3 nm at 34 wt.%. The Pt nanoparticles in an RFA pellet had a uniform radial size distribution, even though the pellet was impregnated with Pt(cod)me2 for too short a short period of time for the system to reach adsorption equilibrium. The high mobility of the atomic Pt evolved during the reduction process is believed to be responsible for this phenomenon. Performing the adsorption of Pt(cod)me2 onto RFA at 80 °C led to concurrent reduction and Pt nanoparticle growth.  相似文献   

18.
Impedance spectroscopy and in situ STM methods have been used for investigation of the camphor and 2,2′-bipyridine (2,2′-BP) adsorption at the electrochemically polished Bi(1 1 1) electrode from weakly acidified Na2SO4 supporting electrolyte solution. The influence of electrode potential on the adsorption kinetics of camphor and 2,2′-BP on Bi(1 1 1) has been demonstrated. In the region of maximal adsorption, i.e. capacitance pit in the differential capacitance versus electrode potential curve, the heterogeneous adsorption and diffusion steps are the rate determining stages for camphor and 2,2′-BP adsorption at the Bi(1 1 1) electrode. It was found that for camphor | Bi(1 1 1) interface the stable adsorbate adlayer detectable by using the in situ STM method has been observed only at the positively charged electrode surface, where the weak co-adsorption of SO42− anions and camphor molecules is possible. At the weakly negatively charged Bi(1 1 1) electrode surface there are only physically adsorbed camphor molecules forming the compact adsorption layer. The in situ STM data in a good agreement with impedance data indicate that a very well detectable 2,2′-BP adsorption layer is formed at Bi(1 1 1) electrode in the wide region of charge densities around the zero charge potential.  相似文献   

19.
Kinetics and mechanism of nitrate ion reduction on Pt(1 1 1) and Cu-modified Pt(1 1 1) electrodes have been studied by means of cyclic voltammetry, potentiostatic current transient technique and in situ FTIRS in solutions of perchloric and sulphuric acids to elucidate the role of the background anion. Modification of platinum surface with copper adatoms or small amount of 3D-Cu crystallites was performed using potential cycling between 0.05 and 0.3 V in solutions with low concentration of copper ions, this allowed us to vary coverage θCu smoothly. Following desorption of copper during the potential sweep from 0.3 to 1.0 V allowed us to estimate actual coverage of Pt surface with Cu adatoms. Another manner of the modification was also applied: copper was electrochemically deposited at several constant potentials in solutions containing 10−5 or 10−4 M Cu2+ and 5 mM NaNO3 with registration of current transients of copper deposition and nitrate reduction.It has been found that nitrate reduction at the Pt(1 1 1) surface modified by copper adatoms in sulphuric acid solutions is hindered as compared to pure platinum due to induced sulphate adsorption at E < 0.3 V. Sulphate blocks the adsorption sites on the platinum surface and/or islands of epitaxial Cu(1 × 1) monolayer thus hindering the adsorption of nitrate anions and their reduction. The extent of inhibition weakly depends on the copper adatom coverage. Deposition of a small amount of bulk copper does not affect noticeably the rate of nitrate reduction.Nitrate reduction on copper-modified Pt(1 1 1) electrodes in perchloric acid solutions occurs much faster as compared to pure platinum. The steady-state currents are higher by 4 and 2 orders of magnitude at the potentials of 0.12 and 0.3 V, respectively. The catalytic effect of copper adatoms is largely caused by the facilitation of nitrate adsorption on the platinum surface near Cuad and/or on the islands of the Cu(1 × 1) monolayer (induced nitrate adsorption).Hydrogen adatoms block the adsorption sites on platinum for NO3 anion adsorption and inhibit reactions of nitrate reduction even at moderate surface coverage.The products of nitrate reduction in sulphuric and perchloric acids are essentially the same (NO and ammonia) irrespective of the presence or absence of Cu on the platinum surface.  相似文献   

20.
In this work, surface modification at atomic level was applied to study the reactivity of step sites on platinum single crystal surfaces. Stepped platinum single crystal electrodes with (1 1 1) terraces separated by monoatomic step sites with different symmetry were decorated with irreversibly adsorbed adatoms, without blocking the terrace sites, and characterized in 0.1 M HClO4 solution. The kinetics of CO oxidation on the different platinum single crystal planes as well as on the step decorated surfaces has been studied using chronoamperometry. The apparent rate constants, which were determined by fitting the experimental data to a mean-field model, decrease after the steps of platinum single crystal electrodes have been blocked by the adatoms. This behavior indicates that steps are active sites for CO oxidation. Tafel slopes measured from the potential dependence of the apparent rate constants of CO oxidation were similar in all cases. This result demonstrates that the electrochemical oxidation of the CO adlayer on all the surfaces follows the same Langmuir–Hinshelwood model, irrespectively of step modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号