首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LaCrO3 was prepared by glycine combustion method and investigated as negative electrode for Ni/MH batteries. The structures of the as-calcined powder and the 20th charge-discharge cycle sample were characterized by XRD. The electrochemical experimental results demonstrated that the LaCrO3 electrode showed excellent electrochemical reversibility and considerably high charge-discharge capacity at various temperatures. Except for the charge-discharge cycle at 298 K, the discharge capacities of LaCrO3 electrode keep steady at 107.1 mA h g−1and 285 mA h g−1 at 313 K and 333 K after 5 cycles, respectively.  相似文献   

2.
Perovskite-type oxide LaFeO3 powder was prepared using a stearic acid combustion method. Its phase structure, electrochemical properties and hydrogen storage mechanism as negative electrodes for nickel/metal hydride (Ni/MH) batteries have been investigated systematically. The results of X-ray diffraction (XRD) analysis show that both the calcined powder and the charged/discharged samples after 10 cycles have orthorhombic structures. The discharge capacity, whose maximum value appeared at the first cycle, is 530.3 mA h g−1 at 333 K and increases with an increase in temperature. The discharge capacity decreases distinctly during the first three cycles and then stays steady at about 80 mA h g−1, 160 mA h g−1 and 350 mA h g−1 at 298 K, 313 K and 333 K, respectively. The hydrogen storage mechanism is studied by XRD, X-ray photoelectron spectroscopy (XPS) and mass spectrometry (MS), coupled with pressure-composition-temperature (PCT) methods. Hydrogen atoms may be intercalating into the oxide lattice and forming a homogeneous solid solution during the charging process.  相似文献   

3.
The influence of Cu(OH)2 addition in 7 mol/L KOH alkaline electrolyte on the electrochemical properties of La0.75Mg0.25Ni3.5 hydrogen storage alloy electrode was investigated in the testing temperature range of from 25 °C to −40 °C in this paper. XRD Rietveld analyses shows that the La0.75Mg0.25Ni3.5 hydrogen storage alloy consists of LaNi5 phase, (La, Mg)2Ni7 phase and (La,Mg)Ni3 phase. The maximum discharge capacity and the high-rate dischargeability (HRD) of the La0.75 Mg0.25Ni3.5 alloy electrode both decrease with decreasing testing temperature, which mainly due to the slower hydrogen transfer in the bulk of the alloy and the lower electrocatalytic activity at lower temperatures. The scanning electron microscopy (SEM)/energy dispersive X-ray spectroscopy (EDS) analyses indicate that, with the addition of Cu(OH)2 to the KOH alkaline electrolyte, fine particles of metal Cu can be coated on the La0.75Mg0.25Ni3.5 alloy electrode surface during charging process by electrodeposition. The Cu powders deposited on the La0.75Mg0.25Ni3.5 alloy electrode can improve the alloy’s low-temperature discharge properties by decreasing its charge-transfer resistance and increasing its exchange current density. The cyclic stability of the Cu-deposited La0.75Mg0.25Ni3.5 alloy electrode can be also improved to a certain extent by increasing its corrosive resistance in KOH alkaline electrolyte.  相似文献   

4.
A new polyaniline (PANI)-coated technique was adopted for a AB5-type alloy (La0.64Ce0.25Pr0.03Nd0.08Ni4.19Mn0.31Co0.42Al0.23) in order to improve its electrochemical and kinetic properties. FE-SEM observation and FT-IR analysis results revealed that the PANI electroless deposited to the surface of alloy particles. Through the PANI-coating the initial discharge capacity increased from 299 to 331 mAh/g and the high rate discharge ability (HRD) increased from 8.5 to 45.0% at discharge current density of 1440 mA/g. For kinetic properties, linear polarization, EIS, anodic polarization and cyclic voltammetry measurements suggested that charge-transfer resistance decreased and the hydrogen absorption rate of the alloys increased after PANI-coating.  相似文献   

5.
The structure and electrochemical properties of a cobalt-free hydrogen storage electrode alloy LaNi4.05−xAl0.45Mn0.5Fex (0 ≤ x ≤ 0.5) have been investigated with different additions of Fe in replacement of Ni. With the increase of Fe content the maximum discharge capacity gradually decreases from 334.8 mAh g−1 to 292.8 mAh g−1, however the cycle stability is improved correspondingly. The capacity decay can remain 28.6% (x = 0.5) after 300 charge/discharge cycles. The high rate discharge (HRD) ability of the alloys (x ≤ 0.5) is improved with the increase of Fe content. It is found that all of the alloys are single CaCu5 phase structure disclosed by XRD pattern. However, small amount of the La2O3 phase, observed from SEM photographs, exists on the matrix of all the alloys and when x = 0.5, some web-like LaNi2.28 phase is segregated out along the crystal boundary.  相似文献   

6.
The effect of magnesium content on the phase structure and electrochemical properties of Ml1−x Mg x Ni2.78Co0.50Mn0.11Al0.11 (x = 0.05, 0.10, 0.20, 0.30) hydrogen storage alloys was investigated. The results of X-ray diffraction reveal that all the alloys consist of the major phase (La, Mg)Ni3 and the secondary phase LaNi5. With increase in x, the relative content of the (La, Mg)Ni3 phase increases gradually, and the maximum capacity and low temperature dischargeability of the alloy electrodes first increase and then decrease. When x is 0.20, the discharge capacity of the alloy electrode reaches 363 mAh g−1 at 293 K and 216 mAh g−1 at 233 K, respectively. The high rate dischargeability of the alloy electrodes increases with increase in x. When the discharge current density is 1200 mA g−1, the high rate dischargeability of the alloy electrodes increases from 22.0% to 50.4% with x increasing from 0.05 to 0.30. The cycling stability of the electrodes decreases gradually with increase in magnesium content.  相似文献   

7.
聚合物镍氢电池的研究进展   总被引:1,自引:0,他引:1  
唐致远  李昌盛  刘元刚 《化工进展》2006,25(11):1251-1255
简述了聚合物镍氢电池的特点和研究进展,列举了几种典型的、研究较为成熟的碱性聚合物电解液,并在容量、寿命和安全性等各方面将聚合物镍氢电池与传统的镍氢电池进行了对比,着重对几种电解液的电导、循环及其他特性进行了概括,同时,展望了聚合物镍氢电池的应用前景。  相似文献   

8.
Perovskite-type LaCrO3 used as negative electrode for Ni/MH batteries was prepared by Pechini method and characterized by XRD and SEM. The electrochemical properties under various temperatures and electrolyte concentrations were investigated. The results showed that the discharge capacity of LaCrO3 electrodes increased with the increase of temperature and electrolyte concentration. Meanwhile, the electrochemical properties of LaCrO3 electrodes were found to be greatly influenced by the dimension of Ni powders, which served as catalyst in electrodes. EIS was employed to study the phenomena above.  相似文献   

9.
In the present study, a novel alloy composite has been synthesized by ball milling nonstoichiometric AB3-type La0.7Mg0.3Ni3.5 alloy with Ti0.17Zr0.08V0.35Cr0.1Ni0.3 alloy in order to improve the cyclic stability and other electrochemical properties of La0.7Mg0.3Ni3.5 alloy electrode. The phase structure, morphology and electrochemical performances of the composite have been investigated systematically. From X-ray diffraction (XRD) patterns, it can be found that the La0.7Mg0.3Ni3.5 and Ti0.17Zr0.08V0.35Cr0.1Ni0.3 alloys still retain their respective phase structures in the composite. Electrochemical studies show that the cyclic stability of the composite electrode is noticeably improved after 100 charge-discharge cycles in comparison with single La0.7Mg0.3Ni3.5 alloy electrode due to enhanced anti-corrosion performance in the alkaline electrolyte. The discharge capacity retention rate C100/Cmax of composite electrode is 62.3%, which is much higher than that of the La0.7Mg0.3Ni3.5 alloy electrode, although the maximum discharge capacity of the former decreases moderately. Both electrochemical impedance spectra (EIS) and linear polarization (LP) studies indicate that the electrochemical kinetics of the composite electrode is also improved. The charge-transfer resistance (Rct), the polarization resistance (Rp) and the exchange current density (I0) of the composite electrode are 160.2 mΩ, 129.5 mΩ and 201.6 mA/g, respectively, which are superior to those of the La0.7Mg0.3Ni3.5 alloy electrode.  相似文献   

10.
Yuan Li  Jinhua Li 《Electrochimica acta》2007,52(19):5945-5949
Phase structure and electrochemical properties of the Ml1−xMgxNi2.80Co0.50Mn0.10Al0.10 (x = 0.08, 0.12, 0.20, 0.24, 0.28) (Ml = La-rich mixed lanthanide) alloys were studied. X-ray diffraction (XRD) analysis and Rietveld refinement show that the alloys consist mainly of LaNi5 and (La,Mg)Ni3 phase. Due to variation in phases of the alloys, the maximum discharge capacity, the high rate dischargeability (HRD), and the low temperature dischargeability increase first and then decrease. The maximum discharge capacity increases from 322 mAh g−1 (x = 0.08) to 375 mAh g−1 (x = 0.12), and then decreases to 351 mAh g−1 (x = 0.28) with increasing x. As the case of x = 0.20, HRD at 1200 mA g−1 and discharge capacity at 233 K reaches 41.7% and 256 mAh g−1, respectively. The cycling stability is improved by substituting La with Ml and B-site multi-alloying, and the capacity retention of Ml0.72Mg0.28Ni2.80Co0.50Mn0.10Al0.10 at the 200th cycle is 71%.  相似文献   

11.
In this paper, Cu, Al and Ni were plated on the AB5–5 mass% LaMg3 composite hydrogen storage alloy using a vacuum evaporation plating method. The phase structure and the electrochemical properties were investigated. The X-ray diffraction (XRD) analysis shows that the phase structure is not changed obviously after the plating Cu, Al and Ni on the composites. The electrochemical tests show that maximum discharge capacity, high rate dischargeability (HRD), dischargeability at low temperature and cyclic stability was improved by vacuum evaporation plating Cu, Al and Ni. Maximum of discharge capacity of the AB5–5 mass% LaMg3 composite alloy plating Ni can reach 351 mAh/g, which is 3.5% higher than that of the untreated. HRD at Id = 1200 mA/g of the composite alloy plating Cu is 45.0% of that at 60 mA/g, which is 20.4% higher than the untreated. Discharge capacity of the composite alloy plating Cu at low temperature 233 K is 205 mAh/g, which is 57.3% of that at 298 K, and it is much higher than 36.8% of the untreated composites. The discharge capacity retention of the composite alloy plating Al after 200 cycles is 7.8% higher than the untreated.  相似文献   

12.
The microstructural and electrochemical properties of La2.3−xCaxMg0.7Ni9 hydrogen storage alloys have been studied systematically. The microstructure examined by XRD, SEM and EDX shows that the alloys consist of multi-phases, which are (La, Mg)2Ni7 phase, LaMgNi4 phase, (La, Mg)Ni3 phase and LaNi5 phase. It is can be found that Ca does not appear to segregate. This phenomenon is different from Mg. With increasing Ca content, the main phase varies from (La, Mg)2Ni7 phase (x = 0) to (La, Mg)Ni3 phase (x = 0.3), LaNi5 phase (x = 0.6, 0.8) and (La, Mg)Ni3 phase (x = 1.0, 1.3). The maximum discharge capacities of the alloy electrodes increase from 244.6 mAh/g (x = 0) to 380 mAh/g (x = 1.0), and then decrease to 353.6 mAh/g (x = 1.3). The discharge capacities of the alloys are related to phase content. Cell volumes of LaNi5 phase, (La, Mg)2Ni7 phase and (La, Mg)Ni3 phase all decrease and the high rate dischargeability (HRD) is improved by adding Ca. The alloy electrodes also show relative good cycling stability up to 100 cycles.  相似文献   

13.
Mg-Ni-Ti-based hydrogen storage alloys Mg0.9Ti0.1Ni1−xMx (M = Co, Mn; x = 0, 0.1, 0.2) were prepared by means of mechanical alloying (MA). The effects of partial substitution of Ni with Co or Mn on the microstructures and electrochemical performance of the alloys were investigated. The result of X-ray diffraction (XRD) shows that the alloys exhibit dominatingly amorphous structures. The electrochemical measurements indicate that the substitution of Ni can dramatically enhance the cycle stability of Mg-Ni-Ti-based alloys. After 50 charge/discharge cycles, the capacity retention rate of the alloy electrodes increases from 30% (Mg0.9Ti0.1Ni) to 59% (Mg0.9Ti0.1Ni0.9Co0.1), 58% (Mg0.9Ti0.1Ni0.9Mn0.1), 46% (Mg0.9Ti0.1Ni0.8Co0.2) and 53% (Mg0.9Ti0.1Ni0.8Mn0.2), respectively. Among these alloys, the Mg0.9Ti0.1Ni0.9Mn0.1 alloy presents better overall electrochemical performance. The cyclic voltammograms (CV) and anti-corruption test reveal that the electrochemical cycle stability of these alloys is improved by substituting Ni with Co or Mn.  相似文献   

14.
The effect of temperature on the overall electrochemical properties of La0.7Mg0.3Ni2.875Co0.525Mn0.1 hydrogen storage alloy has been studied systematically. The results show that temperature has a striking effect on the overall electrochemical properties, especially the electrochemical kinetic performance. The maximum discharge capacity and the high rate dischargeability (HRD) of La0.7Mg0.3Ni2.875Co0.525Mn0.1 alloy electrode both decrease with decreasing test temperature, mainly due to the slower hydrogen transfer in the bulk of the alloy and the lower electrocatalytic activity at lower temperatures. Detailed studies on the temperature effect on the polarization resistance (RD), the exchange current density (I0), the limiting current density (IL) and the hydrogen diffusion coefficient (D), indicate that the diffusion of hydrogen in the bulk for La-Mg-Ni-Co system hydrogen storage alloy electrodes is the rate-determining factor for the discharge process of the alloy electrode for the temperature over 10 °C and the charge-transfer reaction is rate-determining step at lower temperature.  相似文献   

15.
The effect of partial substitution of Co for Ni on the structure and electrochemical properties of the thus formed La2Mg(Ni1−xCox)9 (x = 0.1-0.5) quaternary alloys was investigated. All alloys are consisted of a main phase with hexagonal PuNi3-type structure and a few impurity phases (mainly La2Ni7 and LaNi). The increase of Co content in the alloys leads to an increase in both the cell volume and the hydride stability, and leads to a noticeable decrease in cell volume expansion rate (ΔV/V) on hydriding. The discharge capacity of the alloys at 50 mA/g increases slightly with the increase of Co content and passes though a maximum of 404.5 mAh/g at x = 0.2. As the Co content increases, the high-rate dischargeability of the alloy electrodes at 800 mA/g (HRD800) decreases sharply from 72.8 (x = 0) to 24.5% (x = 0.5), yet the decrease of HRD800 of the alloy electrodes with lower Co substitution (with x ≤ 0.2) is much milder. The slower decrease of HRD800 (from 72.8 to 64.2%) of the alloys with x from 0 to 0.2 is mainly attributed to the decrease of eletrocatalytic activity for charge-transfer reaction, the more rapid decrease of the alloys with x > 0.2 is mainly attributed to the lowering of the hydrogen diffusion rate in the bulk of alloy. The cycling capacity retention rate (S100) of the alloys increase greatly with increasing of Co content, increasing from 60.2% for the alloy with x = 0 to a much higher value of 87.9% for the alloy with x = 0.5. The improvement in cycling stability is attributed to the lower cell volume expansion on hydriding.  相似文献   

16.
基于径向基函数网络的MH/Ni电池荷电状态预测   总被引:1,自引:1,他引:0       下载免费PDF全文
张森 《化工学报》2006,57(9):2162-2166
电动车电池管理系统的核心任务是对电池荷电状态(SOC)进行预测.在分析了MH/Ni电池充放电反应机理的基础上,应用径向基函数(RBF)神经网络建立了预测MH/Ni电池荷电状态的模型,并且应用该模型对电池放电过程中某一状态下的荷电状态进行预测.该模型预测速度快,并且预测值与试验值吻合.人工神经网络建模技术简单直观,是预测MH/Ni电池SOC有力工具.  相似文献   

17.
The structure and electrochemical characteristics of melted composite Ti0.10Zr0.15V0.35Cr0.10Ni0.30 + x% LaNi5 (x = 0, 1, 5 and 10) hydrogen storage alloys have been investigated systematically. XRD shows that the matrix phase structure of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure is not changed after adding LaNi5 alloy. However, the amount of the secondary phase increases with increasing LaNi5 content. Field emission scanning electron microscopy-energy dispersive spectroscopy (FESEM-EDS) shows that the C14 Laves phase contains more Zr and the white lard phase has a composition close to (Zr, Ti)(V, Cr, Ni, La)2. The electrochemical measurements show that the hysteresis effect decreases dramatically with increasing x. The activation performance, the low temperature dischargeability, high rate dischargeability and cyclic stability of composite alloy electrodes increase greatly with increasing x. The maximum discharge capacity first increases as x increases from 0 to 5 and then decreases when x increases further from 5 to 10. The improvement of the electrochemical characteristics caused by adding LaNi5 seems to be related to formation of the secondary phase.  相似文献   

18.
The structure and electrochemical characteristics of melted composite Ti0.10Zr0.15V0.35Cr0.10Ni0.30 + x% LaNi4Al0.4Mn0.3Co0.3 (x = 0, 1, 5) hydrogen storage alloys have been investigated systematically. XRD shows that though the main phase of the matrix alloy remains unchanged after LaNi4Al0.4Mn0.3Co0.3 alloy is added, a new specimen is formed. The amount of the new specimen increases with increasing x. SEM-EDS analysis indicates that the V-based solid solution phase is mainly composed of V, Cr and Ni; C14 Laves phase is mainly composed of Ni, Zr and V; the new specimen containing La is mainly composed of Zr, V and Ni. The electrochemical measurements suggest that the activation performance, the low temperature discharge ability, the high rate discharge ability and the cyclic stability of composite alloy electrodes increase greatly with the growth of x. The HRD is controlled by the charge-transfer reaction of hydrogen and the hydrogen diffusion in the bulk of the alloy under the present experimental conditions.  相似文献   

19.
We report the electrochemical hydrogen charge/discharge properties of electrodes containing crystalline and amorphous FePO4 as active material in KOH electrolyte. Crystalline and amorphous FePO4 were synthesized by an alcohol-assisted precipitation method, and the powders obtained were characterized by X-ray diffraction. X-ray photoelectron spectroscopy is used to investigate the mechanism of hydrogen charge/discharge behavior of FePO4. The electrochemical hydrogen charge/discharge properties of electrodes containing crystalline and amorphous FePO4 were investigated for potential application as negative electrodes in rechargeable hydrogen batteries. In galvanostatic discharge/charge mode at 25 °C, the crystalline FePO4 showed a maximum discharge capacity of 109 mA h g−1, while the amorphous FePO4 showed a maximum discharge capacity of 81.4 mA h g−1. The electrochemical kinetic properties, exchange current density, and proton diffusivity were calculated using linear polarization measurement and the potential-step method.  相似文献   

20.
Nanostructured ternary TiNi-type alloys, namely Ti0.8M0.2Ni (M = Zr, V), TiNi0.8N0.2 (N = Cu, Mn) and TiNi1−x Mn x (x = 0.2, 0.4, 0.6, 1.0), were synthesized by mechanical alloying. Depending on the intensity and time of milling alloys with different microstructure were obtained. The as-milled TiNi1−x Mn x alloys contain substantial amount of amorphous phase, which crystallizes during annealing. Annealing of the as-milled fine nanocrystalline materials at 500 °C results only in slight coarsening of the microstructure, which remains still nanocrystalline. Fully crystalline material (with crystal size larger than 50 nm), consisting of mainly cubic TiNi was obtained by annealing the ball-milled alloys at T ≥ 700 °C. Electrochemical hydrogen charge/discharge cycling of the as-milled as well as of annealed alloys were carried out at galvanostatic conditions. It was found that among the nanocrystalline Ti0.8M0.2Ni0.8N0.2 (M = Zr, V; N = Cu, Mn) alloys TiNi0.8Mn0.2 revealed the highest discharge capacity of 56 mAh g−1 in the as-milled state and 75 mAh g−1 after short-time annealing at 500 °C. Annealing at higher temperature does not increase the capacity further. The as-milled TiNi1−x Mn x alloys with x ≤ 0.4 reveal noticeably higher discharge capacity and better cycle life than the Mn-richer alloys. Based on potentiostatic experiments the diffusion coefficients of hydrogen into TiNi alloys in two different microstructural states (fine and coarser nanocrystalline) as well as in as-milled amorphous/nanocrystalline and nanocrystalline TiNi0.8Mn0.2 were determined. The hydrogen diffusion coefficients of the TiNi alloys are comparable (1.9–2.7 × 10−12 cm2 s−1). The diffusion coefficient in the as-milled amorphous/nanocrystalline TiNi0.8Mn0.2 was found to be 3–4 times higher than that of the as-milled nanocrystalline alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号