共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation of aluminium oxide layers on surfaces with different morphologies prepared by various structuring methods has been analyzed. Different growth rates and thus different oxide thicknesses have been observed under the same reaction parameters on planar surfaces in contrast to convex and concave surfaces with different radii in the curvature. The stronger the curvature of the concave or convex surface, the more the growth rates differ from the growth rates on planar surfaces. The influence of the electrical field strength on those differences is discussed in a simple model. 相似文献
2.
Nevin Tasaltin Deniz Sanli Alexandr Joná? Alper Kiraz Can Erkey 《Nanoscale research letters》2011,6(1):487
Superhydrophobic nanoporous anodic aluminum oxide (alumina) surfaces were prepared using treatment with vapor-phase hexamethyldisilazane (HMDS). Nanoporous alumina substrates were first made using a two-step anodization process. Subsequently, a repeated modification procedure was employed for efficient incorporation of the terminal methyl groups of HMDS to the alumina surface. Morphology of the surfaces was characterized by scanning electron microscopy, showing hexagonally ordered circular nanopores with approximately 250 nm in diameter and 300 nm of interpore distances. Fourier transform infrared spectroscopy-attenuated total reflectance analysis showed the presence of chemically bound methyl groups on the HMDS-modified nanoporous alumina surfaces. Wetting properties of these surfaces were characterized by measurements of the water contact angle which was found to reach 153.2 ± 2°. The contact angle values on HMDS-modified nanoporous alumina surfaces were found to be significantly larger than the average water contact angle of 82.9 ± 3° on smooth thin film alumina surfaces that underwent the same HMDS modification steps. The difference between the two cases was explained by the Cassie-Baxter theory of rough surface wetting. 相似文献
3.
Santos A Alba M Rahman MM Formentín P Ferré-Borrull J Pallarès J Marsal LF 《Nanoscale research letters》2012,7(1):228
ABSTRACT: We report on an exhaustive and systematic study about the photoluminescent properties of nanoporous anodic alumina membranes fabricated by the one-step anodization process under hard conditions in oxalic and malonic acids. This optical property is analysed as a function of several parameters (i.e. hard anodization voltage, pore diameter, membrane thickness, annealing temperature and acid electrolyte). This analysis makes it possible to tune the photoluminescent behaviour at will simply by modifying the structural characteristics of these membranes. This structural tuning ability is of special interest in such fields as optoelectronics, in which an accurate design of the basic nanostructures (e.g. microcavities, resonators, filters, supports, etc.) yields the control over their optical properties and, thus, upon the performance of the nanodevices derived from them (biosensors, interferometers, selective filters, etc.). 相似文献
4.
Yufei Tang Mengchen Mao Sha Qiu Cong Wu 《Journal of the European Ceramic Society》2018,38(11):4149-4154
The effects of the annealing methods and annealing temperatures on the pore structures and mechanical properties of porous alumina were investigated. The amorphisation behavior and solidification behavior of the sucrose solutions during annealing were discussed. The pore morphology of porous alumina changed noticeably after uniform annealing. As annealing temperature increased from ?25 ℃ to ?5 ℃, the pore morphology of porous alumina changed gradually from irregular lamellar channels to circular channels. After directional annealing, the pore morphology of porous alumina was similar to that after uniform annealing; however, the uniformity of pore channels and the density of pore walls were increased. During directional annealing at ?15℃, the compressive strength of porous alumina reached 58.8?MPa, which was 35% higher than that of unannealed porous alumina. 相似文献
5.
Grzegorz D. Sulka Agnieszka Brzózka Leszek Zaraska Marian Jasku?a 《Electrochimica acta》2010,55(14):4368-2626
The nanopore arrays were fabricated by two-step self-organized anodization of aluminum carried out in 0.3 M oxalic acid at the temperature of 20 °C. This relatively high temperature shortens significantly the anodizing time and allows to fabricate quickly thick through-hole membranes without the additional operating cost of a cooling circuit. The structural features of anodic porous alumina such as pore diameter, interpore distance, porosity, pore density and pore circularity were investigated at various durations of pore opening/widening process carried out in 5% H3PO4. An excellent agreement of AAO structural features measured in FE-SEM images of the studied samples with results from software calculations was observed. The pore shape can be monitored qualitatively by fast Fourier transforms (FFTs) and quantitatively by calculation the percentage of pore circularity. Additionally, the regularity of the hexagonal arrangement of nanopores in through-hole AAO membranes was compared for various opening/widening time ranging from 40 to 100 min. It was shown that three-dimensional (3D) representations of FE-SEM images and their surface-height distribution diagrams provide interesting information about the surface roughness evolution during the pore opening/widening process. A template-assisted fabrication of Ag and Sn nanowire arrays by electrochemical deposition into the pores of the prepared AAO templates was also successfully demonstrated. 相似文献
6.
Synthesis and characterization of a new nanoporous carbon material with a bimodal pore system 总被引:1,自引:0,他引:1
Xianbin Liu 《Carbon》2006,44(1):184-187
7.
Astrid Bakken Susanne Wagner Michael J. Hoffmann Bernt Thorstensen Mari-Ann Einarsrud Tor Grande 《Journal of the European Ceramic Society》2018,38(2):665-670
Biaxial strength, fracture toughness and subcritical crack growth are reported for coarse grained porous alumina ceramics. The materials were prepared with a varying amount of a silica sintering aid, which resulted in the formation of a glassy secondary phase at the grain boundaries. Crystalline mullite was additionally found in the material with the highest silica content. The biaxial strength, measured by Ball-on-Ring and Ball-on-3-Balls, was highest for the material without mullite at the grain boundaries, and the biaxial strength decreased with increasing porosity. The fracture toughness of the materials was in the range of 1.7–1.9 MPa m0.5. Measurements of subcritical crack growth by a modified lifetime method in air and aqueous environments demonstrated a higher crack growth rate in water and acid relative to in air. The effect of porosity and grain boundary phase were discussed in relation to subcritical crack growth and fracture mode in the coarse grained alumina ceramics. 相似文献
8.
Josep Ferré-Borrull Mohammad Mahbubur Rahman Josep Pallarès Lluís F Marsal 《Nanoscale research letters》2014,9(1):416
The influence of the anodization temperature and of the number of applied voltage cycles on the photonic properties of nanoporous anodic alumina-based distributed-Bragg reflectors obtained by cyclic voltage anodization is analyzed. Furthermore, the possibility of tuning the stop band central wavelength with a pore-widening treatment after anodization and its combined effect with temperature has been studied by means of scanning electron microscopy and spectroscopic transmittance measurements. The spectra for samples measured right after anodization show irregular stop bands, which become better defined with the pore widening process. The results show that with 50 applied voltage cycles, stop bands are obtained and that increasing the number of cycles contributes to enhancing the photonic stop bands (specially for the case of the as-produced samples) but at the expense of increased scattering losses. The anodization temperature is a crucial factor in the tuning of the photonic stop bands, with a linear rate of 42 nm/°C. The pore widening permits further tuning to reach stop bands with central wavelengths as low as 500 nm. Furthermore, the results also show that applying different anodization temperatures does not have a great influence in the pore-widening rate or in the photonic stop band width. 相似文献
9.
研究了十二烷基苯磺酸钠和C12脂肪醇聚氧乙烯(3)醚对活性氧化铝孔结构的影响。实验结果表明,十二烷基苯磺酸钠和C12脂肪醇聚氧乙烯(3)醚能够使氧化铝平均孔径从11.98 nm分别移至6.32 nm和9.42 nm,比表面从193 m2/g分别增至241 m2/g和230 m2/g。这两种表面活性剂之所以能显著影响氧化铝孔分布,主要是因为,以氧原子为极性头的表面活性剂,不仅能够进入拟薄水铝石粒子间隙,而且能够插入拟薄水铝石层间,其氧原子与拟薄水铝石层表面的羟基以及水分子,通过氢键形成一种新的复合氧化铝。在焙烧的过程中,表面活性剂能够减小拟薄水铝石层表面和微孔内壁的应力,避免了层间的坍塌和毛细孔的收缩,从而影响氧化铝孔分布,且极性头小的表面活性剂影响效果优于极性头大的表面活性剂。 相似文献
10.
Gerasimos S. Armatas 《Chemical engineering science》2006,61(14):4662-4675
An efficient computation method to study flow and transport process of small molecules in porous media using a dual site-bond lattice model, DBSM, is described. The microscopic properties of the porous network take into account the influence of local heterogeneities during the simulations. The numerical experiments demonstrated the combined effect of pore size distribution and connectivity distribution on the mass transport properties and the structural tortuosity. The results indicate that the pore size distribution and percolation phenomena related with pore shielding effects, influence significantly the tortuosity and the effective diffusivity of the porous network. Also, the simulations raise the important role of the connectivity distribution among the various pores in the gas diffusive properties of the poorly connected networks. 相似文献
11.
Amorphous mesoporous materials with a different degree of order in the arrangement of pores are outlined. Particularly, the synthesis of a class of mesoporous silica–alumina (MSA) materials with narrow pore size distribution and a disordered arrangement of pores is reported and discussed. Likewise, the preparation of titanium-containing ordered mesoporous silicates (Ti-MCM-41) and disordered mesoporous silica–titania (MST) are also described in detail. The structural properties of the solids are compared by means of X-ray diffraction and UV-Vis diffuse reflectance spectroscopy. The nitrogen adsorption–desorption measurements were performed and the textural properties are evaluated by the BET, DFT, BJH and t-plot methods.
The high specific surface area and pore volume, as well as the acidity, make MSA solids interesting catalysts in several petrochemical transformations, i.e. oligomerisation, alkylation, hydroisomerisation, rearrangement reactions. Besides, thanks to the width of the mesopores of such solids, the catalytic activity of titanium-containing silicates may have a potential application in the epoxidation of bulky unsaturated fine chemical substrates. 相似文献
12.
The objective of the current paper is to (re-)address the question whether internal stress is a fundamental parameter driving some generic cases of growth instabilities commonly encountered during the growth of anodic oxide films, namely breakdown and pore initiation. This has been done by unraveling possible correlations between a key electrochemical characteristic of the instability event and the internal stress evolution, the latter being measured in situ during the very same anodising experiment. As such, we have been able to make more conclusive statements as compared to the merely speculative arguments in the literature whether these instabilities have a mechanical origin or not. In the case of breakdown, the two well-documented types of breakdown events encountered during galvanostatic Zr anodising were both found to be stress-affected: instantaneous compressive internal stresses were identified as the driving force for both the densifying phase transformation responsible for type-I breakdown, as well as for the buckling-induced delamination events observed during type-II breakdown. Pore initiation in anodic Al2O3 on the other hand was found not be stress-affected. Instead, pore formation is rather believed to induce itself a modification in the mechanical behaviour, and was therefore classified as stress-affecting. 相似文献
13.
We have carried out a detailed investigation on anion impurities in self-organized porous alumina membranes (PAMs) prepared by a two-step electrochemical anodization process in oxalic acid solutions. The employment of the energy dispersive spectroscopy, high resolution transmission electron microscope and infrared absorption spectra has demonstrated the existence and nonuniform distribution of the anions in the PAM sidewalls. The variation of the COO− stretching vibration and CO2 absorption bands indicates that annealing can lead to the decrease of the concentration in the PAMs due to the decomposition of impurity groups related to . We have further presented clear functionality that the anions have played key roles in the refractive index and absorption coefficient of the PAMs, and the surface morphology and crystallization of the deposited ZnO nanopore arrays. 相似文献
14.
Transition metal hexacyanoferrate (MeHCF) have attracted extensive attention because of their outstanding properties including, electrocatalysis, molecular magnetism, biosensing and ion-exchange. This paper describes an approach for fabrication of ordered nanoarrays of Ni hexacyanoferrate (NiHCF) structures with different morphologies such as dots, rods and tubes in order to advance their properties and applications. The method is based on the conversion of Ni into NiHCF nanostructures by electrochemical oxidation in the presence of hexacyanoferrate ions, using nanoporous anodic alumina oxide (AAO) as a template. The structure and morphology of formed Ni and NiHCF nanoarrays were confirmed by scanning electron microscopy (SEM), showing agreement with the pore structures of the AAO template. The electrocatalytic activity of NiHCF nanorod array electrodes showed high catalytic properties for the detection of hydrogen peroxide and the potential to be used as a platform for direct biosensing applications. The ion-exchange ability of fabricated NiHCF nanostructures (nanorods and nanotubes) toward alkali cations such as Na+ has been successfully confirmed. 相似文献
15.
ZhiPeng Wei Shujing Li Yuanbing Li XueSong Li Ruofei Xiang NaNa Xu 《Ceramics International》2018,44(18):22616-22621
To improve the properties of porous alumina ceramics, which were typically prepared by adding pore-forming agents, rice husk (RH) as pore-forming agent was pretreated with zirconia sol. The effects of sol-treatment on the thermal conductivity and compressive strength of the resultant ceramics were characterized. Furthermore, the pore size distribution, pore shape, microstructure, and phase evolution also were studied. The results showed that the RH pretreatment optimizes the microstructure of the ceramic pores. Moreover, complete morph-genetic RH is clearly observed in the pores, which is established as a key factor in improving the properties of the resultant ceramic. The thermal insulation properties are determined to significantly improve, although the thermal conductivity increases slightly with the increment of zirconia sol concentration from 5 to 10?wt%. Meanwhile, after sintering at 1550?°C, the compressive strength is significantly greater for the specimen prepared with 10?wt% zirconia sol-treated RH (65.56?MPa) than that with untreated RH (43.37?MPa). Hence, it was demonstrated that the use of zirconia sol-pretreated RH as a pore-forming agent could enhance the mechanical and thermal insulation properties of porous alumina ceramics. 相似文献
16.
A holistic model was developed and applied to anodic alumina films galvanostatically grown in sulphuric acid solution at different anodising conditions thus characterised by different structural characteristics. The O2− and Al3+ species transport numbers near the metal|oxide interface were determined that depended on both temperature and current density. The rate of film thickness growth was found to be proportional to the O2− anionic current through the barrier layer near the metal|oxide interface. The results introduced a new growth mechanism theory embracing the rarefaction of barrier layer oxide lattice towards the metal|oxide interface. The oxide density near the metal|oxide is closely independent of anodising conditions and is related to the transformation of Al lattice to a transient oxide lattice about 37% rarer than that of γ-Al2O3 that is further suitably transformed to denser, amorphous or nanocrystalline material as this oxide is shifted to the oxide|electrolyte interface and becomes the pore wall material. This gradual lattice density variability can explain many peculiar properties of anodic alumina films. 相似文献
17.
Yukichi Sasaki Wataru Shimizu Yasunori Ando Hiroyasu Saka 《Microporous and mesoporous materials》2000,40(1-3):63-71
A zeolite membrane for CO2 gas separation was synthesized on a porous Al2O3 substrate by hydrothermal synthesis. Observations using transmission electron microscopy (TEM) showed that zeolite had formed in the pores of the substrate (in the “composite layer”). High-resolution TEM observations showed that the zeolite in the pores was MFI and that the crystal grains of the zeolite were connected directly without any grain boundary phases. This suggests that the composite layer can be pinhole free, so the zeolite membrane could function as an effective gas filter. EDS analysis showed that Al/Si ratio of a zeolite framework was larger in the composite layer. This will be a primary factor in densification of zeolite grains at the composite layer. 相似文献
18.
Xueqing Li Dongxu Yao Kaihui Zuo Yongfeng Xia Jinwei Yin Hanqin Liang Yu-Ping Zeng 《Journal of the European Ceramic Society》2019,39(9):2855-2861
Porous Si3N4 ceramics with monomodal and bimodal pore structure were prepared by cold isostatic pressing and freeze-casting, respectively. Both the pore structure and permeability behavior of the porous Si3N4 ceramics were tailored by altering the pressure of cold isostatic pressing and the composition and content of solvent during freeze-casting. The specimens obtained by cold isostatic pressing exhibited smaller Darcian and non-Darcian permeability than those of freeze-casted samples due to their lower open porosity, smaller pore size and higher tortuosity. On the other hand, compared with the ice-templated specimens having the same solvent volume in the ceramic slurries as them during freeze-casting, the emulsion-ice templated samples showed smaller open porosity, macropore size and Dacian permeability, but the similar non-Darcian permeability because of their larger micropores and better pore interconnectivity. 相似文献
19.
Porous anodic alumina (PAA) film has recently attracted much attention as a key material for the fabrication of various nanostructures. In this study, a multi-step anodization and leaching process was employed to produce three-dimensional nanometer scale structured film. During the leaching process, the porous alumina film was dipped in phosphoric acid solution for pore widening. Each anodization process was followed by this leaching process. This method produced alumina film with multi-step structure. Meanwhile, with five-step film production, the structure showed inverted cone structure. We produced the low aspect ratio pores of this structure, which would be applicable for fabrications of nanomaterials. In addition, the aspect ratio was controlled by changing the anodization duration. 相似文献
20.
I.C. Finhana O.H. Borges T. Santos V.R. Salvini V.C. Pandolfelli 《Ceramics International》2021,47(16):22717-22724
Adding pre-foamed colloidal alumina to ultrastable Al2O3-stabilised foams can be a path towards partially counteracting the firing shrinkage of these materials and producing macroporous ceramics with smaller pores. Nevertheless, this system still presents a long setting time and high sintering-induced shrinkage, which hinders the production of larger samples and reduces its porosity. In the present work, it was observed that adding calcium aluminate cement suspension (CACS) and CaCO3 (calcite) to the aforementioned system can speed up its solidification kinetics, improve its mechanical strength and reduce its shrinkage after firing, maintaining high porosity and smaller pore sizes. By using these raw materials, samples with an average pore size below 60 μm, total porosity above 70%, and a narrower pore size distribution were attained after thermal treatment at 1600 °C for 5h. Moreover, due to the in situ formation of calcium hexaluminate, their shrinkage after sintering was almost halved (from ~20% to 11%). 相似文献