首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ER-to-Golgi transport in yeast may be reproduced in vitro with washed membranes, purified proteins (COPII, Uso1p and LMA1) and energy. COPII coated vesicles that have budded from the ER are freely diffusible but then dock to Golgi membranes upon the addition of Uso1p. LMA1 and Sec18p are required for vesicle fusion after Uso1p function. Here, we report that the docking reaction is sensitive to excess levels of Sec19p (GDI), a treatment that removes the GTPase, Ypt1p. Once docked, however, vesicle fusion is no longer sensitive to GDI. In vitro binding experiments demonstrate that the amount of Uso1p associated with membranes is reduced when incubated with GDI and correlates with the level of membrane-bound Ypt1p, suggesting that this GTPase regulates Uso1p binding to membranes. To determine the influence of SNARE proteins on the vesicle docking step, thermosensitive mutations in Sed5p, Bet1p, Bos1p and Sly1p that prevent ER-to-Golgi transport in vitro at restrictive temperatures were employed. These mutations do not interfere with Uso1p-mediated docking, but block membrane fusion. We propose that an initial vesicle docking event of ER-derived vesicles, termed tethering, depends on Uso1p and Ypt1p but is independent of SNARE proteins.  相似文献   

2.
Small GTPases of the Ypt/Rab family are involved in the regulation of vesicular transport. Cycling between the GDP- and GTP-bound forms and the accessory proteins that regulate this cycling are thought to be crucial for Ypt/Rab function. Guanine nucleotide exchange factors (GEFs) stimulate both GDP loss and GTP uptake, and GTPase-activating proteins (GAPs) stimulate GTP hydrolysis. Little is known about GEFs and GAPs for Ypt/Rab proteins. In this article we report the identification and initial characterization of two factors that regulate nucleotide cycling by Ypt1p, which is essential for the first two steps of the yeast secretory pathway. The Ypt1p-GEF stimulates GDP release and GTP uptake at least 10-fold and is specific for Ypt1p. Partially purified Ypt1p-GEF can rescue the inhibition caused by the dominant-negative Ypt1p-D124N mutant of in vitro endoplasmic reticulum-to-Golgi transport. This mutant probably blocks transport by inhibiting the GEF, suggesting that we have identified the physiological GEF for Ypt1p. The Ypt1p-GAP stimulates GTP hydrolysis by Ypt1p up to 54-fold, has a higher affinity for the GTP-bound form of Ypt1p than for the GDP-bound form, and is specific to a subgroup of exocytic Ypt proteins. The Ypt1p-GAP activity is not affected by deletion of two genes that encode known Ypt GAPs, GYP7 and GYP1, nor is it influenced by mutations in SEC18, SEC17, or SEC22, genes whose products are involved in vesicle fusion. The GEF and GAP activities for Ypt1p localize to particulate cellular fractions. However, contrary to the predictions of current models, the GEF activity localizes to the fraction that functions as the acceptor in an endoplasmic reticulum-to-Golgi transport assay, whereas the GAP activity cofractionates with markers for the donor. On the basis of our current and previous results, we propose a new model for the role of Ypt/Rab nucleotide cycling and the factors that regulate this process.  相似文献   

3.
GTPases of the Ypt/Rab family play a key role in the regulation of vesicular transport. Their ability to cycle between the GTP- and the GDP-bound forms is thought to be crucial for their function. Conversion from the GTP- to the GDP-bound form is achieved by a weak endogenous GTPase activity, which can be stimulated by a GTPase-activating protein (GAP). Current models suggest that GTP hydrolysis and GAP activity are essential for vesicle fusion with the acceptor compartment or for timing membrane fusion. To test this idea, we inactivated the GTPase activity of Ypt1p by using the Q67L mutation, which targets a conserved residue that helps catalyze GTP hydrolysis in Ras. We demonstrate that the mutant Ypt1-Q67L protein is severely impaired in its ability to hydrolyze GTP both in the absence and in the presence of GAP and consequently is restricted mostly to the GTP-bound form. Surprisingly, a strain with ypt1-Q67L as the only YPT1 gene in the cell has no observable growth phenotypes at temperatures ranging from 14 to 37 degrees C. In addition, these mutant cells exhibit normal rates of secretion and normal membrane morphology as determined by electron microscopy. Furthermore, the ypt1-Q67L allele does not exhibit dominant phenotypes in cell growth and secretion when overexpressed. Together, these results lead us to suggest that, contrary to current models for Ypt/Rab function, GTP hydrolysis is not essential either for Ypt1p-mediated vesicular transport or as a timer to turn off Ypt1p-mediated membrane fusion but only for recycling of Ypt1p between compartments. Finally, the ypt1-Q67L allele, like the wild type, is inhibited by dominant nucleotide-free YPT1 mutations. Such mutations are thought to exert their dominant phenotype by sequestration of the guanine nucleotide exchange factor (GNEF). These results suggest that the function of Ypt1p in vesicular transport requires not only the GTP-bound form of the protein but also the interaction of Ypt1p with its GNEF.  相似文献   

4.
Rab proteins form the largest branch of the Ras superfamily of GTPases. They are localized to the cytoplasmic face of organelles and vesicles involved in the biosynthetic/secretory and endocytic pathways in eukaryotic cells. It is now well established that Rab proteins play an essential role in the processes that underlie the targeting and fusion of transport vesicles with their appropriate acceptor membranes. However, the recent discovery of several putative Rab effectors, which are not related to each other and which fulfil diverse functions, suggests a more complex role for Rab proteins. At least two Rab proteins act at the level of the Golgi apparatus. Rab1 and its yeast counterpart Ypt1 control transport events through early Golgi compartments. Work from our laboratory points out a role for Rab6 in intra-Golgi transport, likely in a retrograde direction.  相似文献   

5.
The yeast transport GTPase Ypt6p is dispensable for cell growth and secretion, but its lack results in temperature sensitivity and missorting of vacuolar carboxypeptidase Y. We previously identified four yeast genes (SYS1, 2, 3, and 5) that on high expression suppressed these phenotypic alterations. SYS3 encodes a 105-kDa protein with a predicted high alpha-helical content. It is related to a variety of mammalian Golgi-associated proteins and to the yeast Uso1p, an essential protein involved in docking of endoplasmic reticulum-derived vesicles to the cis-Golgi. Like Uso1p, Sys3p is predominatly cytosolic. According to gel chromatographic, two-hybrid, and chemical cross-linking analyses, Sys3p forms dimers and larger protein complexes. Its loss of function results in partial missorting of carboxypeptidase Y. Double disruptions of SYS3 and YPT6 lead to a significant growth inhibition of the mutant cells, to a massive accumulation of 40- to 50-nm vesicles, to an aggravation of vacuolar protein missorting, and to a defect in alpha-pheromone processing apparently attributable to a perturbation of protease Kex2p cycling between the Golgi and a post-Golgi compartment. The results of this study suggest that Sys3p, like Ypt6p, acts in vesicular transport (presumably at a vesicle-docking stage) between an endosomal compartment and the most distal Golgi compartment.  相似文献   

6.
Membrane traffic in eukaryotic cells requires that specific v-SNAREs on transport vesicles interact with specific t-SNAREs on target membranes. We identified a novel Saccharomyces cerevisiae v-SNARE (Vti1p) encoded by the essential gene, VTI1. Vti1p interacts with the prevacuolar t-SNARE Pep12p to direct Golgi to prevacuolar traffic. vti1-1 mutant cells missorted and secreted the soluble vacuolar hydrolase carboxypeptidase Y (CPY) rapidly and reversibly when vti1-1 cells were shifted to the restrictive temperature. However, overexpression of Pep12p suppressed the CPY secretion defect exhibited by vti1-1 cells at 36 degrees C. Characterization of a second vti1 mutant, vti1-11, revealed that Vti1p also plays a role in membrane traffic at a cis-Golgi stage. vti1-11 mutant cells displayed a growth defect and accumulated the ER and early Golgi forms of both CPY and the secreted protein invertase at the nonpermissive temperature. Overexpression of the yeast cis-Golgi t-SNARE Sed5p suppressed the accumulation of the ER form of CPY but did not lead to CPY transport to the vacuole in vti1-11 cells. Overexpression of Sed5p allowed growth in the absence of Vti1p. In vitro binding and coimmunoprecipitation studies revealed that Vti1p interacts directly with the two t-SNAREs, Sed5p and Pep12p. These data suggest that Vti1p plays a role in cis-Golgi membrane traffic, which is essential for yeast viability, and a nonessential role in the fusion of Golgi-derived vesicles with the prevacuolar compartment. Therefore, a single v-SNARE can interact functionally with two different t-SNAREs in directing membrane traffic in yeast.  相似文献   

7.
Bet1p is a type II membrane protein that is required for vesicular transport between the endoplasmic reticulum and Golgi complex in the yeast Saccharomyces cerevisiae. A domain of Bet1p, that shows potential to be involved in a coiled-coil interaction, is homologous to a region of the neuronal protein SNAP-25. Here, we used in vitro binding studies to demonstrate that Bet1p plays a role in potentiating soluble NSF attachment protein receptor (SNARE) interactions. Mutational analysis points to the coiled-coil region as necessary for Bet1p function, and circular dichroism experiments support this theory. In vitro binding studies were also used to demonstrate that a direct interaction between Bet1p and Bos1p is required for the efficient interaction of the vesicle SNARE with its SNARE target. Genetic studies suggest that the interactions of Bet1p with Bos1p are regulated by the small GTP-binding protein Ypt1p.  相似文献   

8.
SEC35 was identified in a novel screen for temperature-sensitive mutants in the secretory pathway of the yeast Saccharomyces cerevisiae (. Genetics. 142:393-406). At the restrictive temperature, the sec35-1 strain exhibits a transport block between the ER and the Golgi apparatus and accumulates numerous vesicles. SEC35 encodes a novel cytosolic protein of 32 kD, peripherally associated with membranes. The temperature-sensitive phenotype of sec35-1 is efficiently suppressed by YPT1, which encodes the rab-like GTPase required early in the secretory pathway, or by SLY1-20, which encodes a dominant form of the ER to Golgi target -SNARE-associated protein Sly1p. Weaker suppression is evident upon overexpression of genes encoding the vesicle-SNAREs SEC22, BET1, or YKT6. The cold-sensitive lethality that results from deleting SEC35 is suppressed by YPT1 or SLY1-20. These genetic relationships suggest that Sec35p acts upstream of, or in conjunction with, Ypt1p and Sly1p as was previously found for Uso1p. Using a cell-free assay that measures distinct steps in vesicle transport from the ER to the Golgi, we find Sec35p is required for a vesicle docking stage catalyzed by Uso1p. These genetic and biochemical results suggest Sec35p acts with Uso1p to dock ER-derived vesicles to the Golgi complex.  相似文献   

9.
Soluble factors, NSF and SNAPs, are required at many membrane fusion events within the cell. They interact with a class of type II integral membrane proteins termed SNAP receptors, or SNAREs. Interaction between cognate SNAREs on opposing membranes is a prerequisite for NSF dependent membrane fusion. NSF is an ATPase which will disrupt complexes composed of different SNAREs. However, there is increasingly abundant evidence that the SNARE complex recognised by NSF does not bridge the two fusing membranes, but rather is composed of SNAREs in the same membrane. The essential role of NSF may be to prime SNAREs for a direct role during fusion. The best characterised SNAREs in the Golgi are Sed5p in yeast and its mammalian homologue syntaxin 5, both of which are predominantly localised to the cis Golgi. The SNARE-SNARE interactions in which these two proteins are involved are strikingly similar. Sed5p and syntaxin 5 may mediate three distinct pathways for membrane flow into the cis Golgi, one from the ER, one from later Golgi cisternae, and possibly a third from endosomes. Syntaxin 5 is itself likely to cycle through the ER, and thus may be involved in homotypic fusion of ER derived transport vesicles. In all well characterised SNARE dependent membrane fusion events one of the interacting SNAREs is a syntaxin homologue. There are only eight members of the syntaxin family in yeast. Besides Sed5p two others, Tlg1p and Tlg2p, are found in the Golgi complex. They are present in a late Golgi compartment, but neither is required for transit of secreted proteins through the Golgi. We suggest that these observations are most compatible with a model for transit through the Golgi in which anterograde cargo is carried in cisternae, the enzymatic composition of which changes with time as Golgi resident enzymes are delivered in retrograde transport vesicles.  相似文献   

10.
In both mammals and yeast, intracellular vesicular transport depends on the correct shuttling between membrane and cytosol of the Rab/Ypt small G proteins. Membrane association of these proteins requires prenylation by the Rab geranylgeranyl transferase that recognizes a complex formed by the Rab/Ypt protein and the Rab escort protein (REP). After prenylation the Rab/Ypt protein is delivered to the target membranes by REP. Little is known about the early steps of the Rab-REP complex formation and where this association occurs in the cell. Although prenylation is believed to take place in the cytosol, we show that the yeast Rab escort protein Mrs6 is present in both soluble and particulate fractions of cell extracts. Mrs6p is associated with the heavy microsomal fraction that contains endoplasmic reticulum-Golgi membranes but is absent in the plasma membrane, vacuoles, mitochondria, and microsomal subfraction associated with mitochondria. The solubilization pattern of the particulate pool of Mrs6p implies that this protein is peripherally but tightly associated with membranes via hydrophobic interactions and metal ions. We also report that the C terminus of Mrs6p is important for maintaining the solubility of the protein because its deletion or replacement with the C terminus of RabGDI results in a protein that localizes only to membranes.  相似文献   

11.
Kinesins comprise a large family of microtubule-based motor proteins, of which individual members mediate specific types of motile processes. Using the ezrin domain of the protein-tyrosine phosphatase PTPD1 as a bait in a yeast two-hybrid screen, we identified a new kinesin-like protein, KIF1C. KIF1C represents a member of the Unc104 subfamily of kinesin-like proteins that are involved in the transport of mitochondria or synaptic vesicles in axons. Like its homologues, the 1103-amino acid protein KIF1C consists of an amino-terminal motor domain followed by a U104 domain and probably binds to target membranes through carboxyl-terminal sequences. Interestingly, KIF1C was tyrosine-phosphorylated after peroxovanadate stimulation when overexpressed in 293 or NIH3T3 fibroblasts or in native C2C12 cells. Using immunofluorescence, we found that KIF1C is localized primarily at the Golgi apparatus. In brefeldin A-treated cells, the Golgi membranes and KIF1C redistributed to the endoplasmic reticulum (ER). This brefeldin A-induced flow of Golgi membranes into the ER was inhibited in cells transiently overexpressing catalytically inactive KIF1C. In conclusion, our data suggest an involvement of tyrosine phosphorylation in the regulation of the Golgi to ER membrane flow and describe a new kinesin-like motor protein responsible for this transport.  相似文献   

12.
The fusion of endoplasmic reticulum (ER) membranes in yeast does not require Sec18p/NSF and Sec17p, two proteins needed for docking of vesicles with their target membrane. Instead, ER membranes require a NSF-related ATPase, Cdc48p. Since both vesicular and organelle fusion events use related ATPases, we investigated whether both fusion events are also SNARE mediated. We present evidence that the fusion of ER membranes requires Ufe1p, a t-SNARE that localizes to the ER, but no known v-SNAREs. We propose that the Ufe1 protein acts in the dual capacity of an organelle membrane fusion-associated SNARE by undergoing direct t-t-SNARE and Cdc48p interactions during organelle membrane fusion as well as a t-SNARE for vesicular traffic.  相似文献   

13.
14.
We have isolated vesicles that mediate protein transport from the ER to Golgi membranes in perforated yeast. These vesicles, which form de novo during in vitro incubations, carry lumenal and membrane proteins that include core-glycosylated pro-alpha-factor, Bet1, Sec22, and Bos1, but not ER-resident Kar2 or Sec61 proteins. Thus, lumenal and membrane proteins in the ER are sorted prior to transport vesicle scission. Inhibition of Ypt1p-function, which prevents newly formed vesicles from docking to cis-Golgi membranes, was used to block transport. Vesicles that accumulate are competent for fusion with cis-Golgi membranes, but not with ER membranes, and thus are functionally committed to vectorial transport. A 900-fold enrichment was developed using differential centrifugation and a series of velocity and equilibrium density gradients. Electron microscopic analysis shows a uniform population of 60 nm vesicles that lack peripheral protein coats. Quantitative Western blot analysis indicates that protein markers of cytosol and cellular membranes are depleted throughout the purification, whereas the synaptobrevin-like Bet1, Sec22, and Bos1 proteins are highly enriched. Uncoated ER-derived transport vesicles (ERV) contain twelve major proteins that associate tightly with the membrane. The ERV proteins may represent abundant cargo and additional targeting molecules.  相似文献   

15.
The fusion of intracellular transport vesicles with their target membranes requires the assembly of SNARE proteins anchored in the apposed membranes. Here we use recombinant cytoplasmic domains of the yeast SNAREs involved in Golgi to plasma membrane trafficking to examine this assembly process in vitro. Binary complexes form between the target membrane SNAREs Sso1p and Sec9p; these binary complexes can subsequently bind to the vesicle SNARE Snc2p to form ternary complexes. Binary and ternary complex assembly are accompanied by large increases in alpha-helical structure, indicating that folding and complex formation are linked. Surprisingly, we find that binary complex formation is extremely slow, with a second-order rate constant of approximately 3 M(-1) s(-1). An N-terminal regulatory domain of Sso1p accounts for slow assembly, since in its absence complexes assemble 2,000-fold more rapidly. Once binary complexes form, ternary complex formation is rapid and is not affected by the presence of the regulatory domain. Our results imply that proteins that accelerate SNARE assembly in vivo act by relieving inhibition by this regulatory domain.  相似文献   

16.
A cell-free vesicle fusion assay that reproduces a subreaction in transport of pro-alpha-factor from the ER to the Golgi complex has been used to fractionate yeast cytosol. Purified Sec18p, Uso1p, and LMA1 in the presence of ATP and GTP satisfies the requirement for cytosol in fusion of ER-derived vesicles with Golgi membranes. Although these purified factors are sufficient for vesicle docking and fusion, overall ER to Golgi transport in yeast semi-intact cells depends on COPII proteins (components of a membrane coat that drive vesicle budding from the ER). Thus, membrane fusion is coupled to vesicle formation in ER to Golgi transport even in the presence of saturating levels of purified fusion factors. Manipulation of the semi-intact cell assay is used to distinguish freely diffusible ER- derived vesicles containing pro-alpha-factor from docked vesicles and from fused vesicles. Uso1p mediates vesicle docking and produces a dilution resistant intermediate. Sec18p and LMA1 are not required for the docking phase, but are required for efficient fusion of ER- derived vesicles with the Golgi complex. Surprisingly, elevated levels of Sec23p complex (a subunit of the COPII coat) prevent vesicle fusion in a reversible manner, but do not interfere with vesicle docking. Ordering experiments using the dilution resistant intermediate and reversible Sec23p complex inhibition indicate Sec18p action is required before LMA1 function.  相似文献   

17.
The cDNA encoding a Ypt/Rab guanosine dissociation inhibitor (Ypt-GDI) was isolated from the multicellular green alga Volvox carteri, representing the first complete plant gdi gene described. The gdiV1 gene occurs as a single copy in the algal genome, indicating that its product regulates all YptV proteins from Volvox. The derived GDI protein (GDIV1p) shows high similarity to animal and fungal GDIs. A specific antibody developed against GDIV1p detected the protein throughout the whole Volvox life-cycle. GDIV1p was localized in the cytoplasm and in the algal flagellum. This is in line with earlier findings of a dual localization of Ypt proteins both in the cell body and in the motility organelle, and indicates a novel role of the GDI/Ypt system, possibly in intraflagellar transport.  相似文献   

18.
pep12/vps6 mutants of Saccharomyces cerevisiae are defective in delivery of soluble vacuolar hydrolases to the vacuole. Morphological analysis by electron microscopy revealed that pep12 cells accumulate 40- to 50-nm vesicles. Furthermore, pep12 cells have enlarged vacuoles characteristic of class D pep/vps mutants. PEP12 encodes a protein of 288 amino acids that has a C-terminal hydrophobic region and shares significant sequence similarity with members of the syntaxin protein family. These proteins appear to participate in the docking and fusion of intracellular transport vesicles. Pep12p is the first member of the syntaxin family to be implicated in transport between the Golgi and the vacuole/lysosome. Pep12p-specific polyclonal antisera detected a 35-kDa protein that fractionated as an integral membrane protein. Subcellular fractionation experiments revealed that Pep12p was associated with membrane fractions of two different densities; the major pool (approximately 90%) of pep12p may associate with the endosome, while a minor pool (approximately 10%) cofractionated with the late Golgi marker Kex2p. These observations suggest that Pep12p may mediate the docking of Golgi-derived transport vesicles at the endosome.  相似文献   

19.
Genetic analyses of vacuolar protein sorting in Saccharomyces cerevisiae have uncovered a large number of mutants (vps) that missort and secrete soluble vacuolar hydrolases. Here we report the characterization of the gene product affected in one of these mutants, Vps8p. Polyclonal antiserum raised against a trpE-Vps8 fusion protein specifically detects a 134-kDa protein in labeled yeast cell extracts. Subcellular fractionation studies demonstrate that Vps8p is distributed between a low speed membrane pellet fraction and a high speed membrane pellet fraction. The lack of a hydrophobic domain in Vps8p suggests that Vps8p peripherally associates with a membrane(s). This association was found to depend on the function of Vps21p, a member of the Rab/Ypt/Sec4 family of small GTPases. In vps21 null mutant cells, Vps8p is found in the cytosol. In addition, overexpression of Vps21p partially suppresses a vps8 null mutant, indicating that Vps8p and Vps21p functionally interact. Vps8p contains a C-terminal cysteine-rich region that conforms to the H2 variant of the RING finger Zn2+ binding motif. Truncation of this C-terminal region partially compromises Vps8p function. While vps8 null mutant strains missort and secrete soluble vacuolar hydrolases, the integral vacuolar membrane protein, alkaline phosphatase (ALP), is sorted to the vacuole and matured normally. In addition, when vps8 mutants are combined with endocytic or late secretory pathway mutants (end3 or sec1, respectively), ALP is still delivered to the vacuole. These observations indicate that ALP is sorted to the vacuole in a Vps8p-independent manner, possibly via an alternative vesicle carrier.  相似文献   

20.
Protein transport in eukaryotic cells requires the selective docking and fusion of transport intermediates with the appropriate target membrane. t-SNARE molecules that are associated with distinct intracellular compartments may serve as receptors for transport vesicle docking and membrane fusion through interactions with specific v-SNARE molecules on vesicle membranes, providing the inherent specificity of these reactions. VAM3 encodes a 283-amino acid protein that shares homology with the syntaxin family of t-SNARE molecules. Polyclonal antiserum raised against Vam3p recognized a 35-kD protein that was associated with vacuolar membranes by subcellular fractionation. Null mutants of vam3 exhibited defects in the maturation of multiple vacuolar proteins and contained numerous aberrant membrane-enclosed compartments. To study the primary function of Vam3p, a temperature-sensitive allele of vam3 was generated (vam3(tsf)). Upon shifting the vam3(tsf) mutant cells to nonpermissive temperature, an immediate block in protein transport through two distinct biosynthetic routes to the vacuole was observed: transport via both the carboxypeptidase Y pathway and the alkaline phosphatase pathway was inhibited. In addition, vam3(tsf) cells also exhibited defects in autophagy. Both the delivery of aminopeptidase I and the docking/ fusion of autophagosomes with the vacuole were defective at high temperature. Upon temperature shift, vam3(tsf) cells accumulated novel membrane compartments, including multivesicular bodies, which may represent blocked transport intermediates. Genetic interactions between VAM3 and a SEC1 family member, VPS33, suggest the two proteins may act together to direct the docking and/or fusion of multiple transport intermediates with the vacuole. Thus, Vam3p appears to function as a multispecificity receptor in heterotypic membrane docking and fusion reactions with the vacuole. Surprisingly, we also found that overexpression of the endosomal t-SNARE, Pep12p, suppressed vam3Delta mutant phenotypes and, likewise, overexpression of Vam3p suppressed the pep12Delta mutant phenotypes. This result indicated that SNAREs alone do not define the specificity of vesicle docking reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号