共查询到18条相似文献,搜索用时 46 毫秒
1.
针对多条运营线路的公交区域调度问题,给出了人员调度问题的改进模型,模型的目标是在满足工作时间、跨度时间、换班要求等相关约束的条件下使人员完成任务的间隔时间最小。论文对已有蚁群算法解决车辆路径优化问题的算法进行了改进。对算法中相应的转移规则和轨迹更新规则进行了重新设定,改进了算法转移策略和信息素更新策略。给出了算法的实现步骤。通过仿真,对模型的正确性进行了验证。证明了改进蚁群算法解决公交调度问题的高效性和较强的适用性。 相似文献
2.
一种改进的蚁群算法解决粮食物流中的VRP问题 总被引:2,自引:0,他引:2
针对粮食物流中的VRP问题,提出了一种新的更加忠实于真实蚁群信息系统的蚁群算法,克服了蚂蚁之间协作不足,存在滞后的缺陷,通过TSP问题与传统蚁群算法进行仿真对比,证明了算法有效性. 相似文献
3.
4.
《南昌水专学报》2019,(3):71-76
随着共享经济的发展,共享单车逐渐走进人们的生活。为解决因共享单车出行的潮汐性而导致的资源浪费和供求关系不平衡的问题,将各调度区域内车辆数量的初始值及其变化速率考虑进约束范围,并对蚁群算法改进其禁忌表的节点选取方式,使其能够适用于求解动态共享单车调度问题,最终得到一条从调度中心出发的路径,同时能够保证调度量的最大化。实验结果表明,改进后的蚁群算法相比离散差分进化算法,在精确性和执行效率上有着显著的优势,尤其是在问题规模较大的情况下。在分别运行50次的条件下,蚁群算法成功寻得最优解的次数相较于离散差分进化算法提高了94%;在寻得最优解的条件下,蚁群算法的评价次数相较于离散差分进化算法减少了65. 4%。 相似文献
5.
针对带时间窗车辆路径问题(Vehicle Routing Problem with Time Windows, VRPTW)的特点,对蚁群算法进行了改进,优化了其搜索解的能力和收敛速度,用实例证明了改进的蚁群算法对解决VRPTW的有效性. 相似文献
6.
基于蚁群算法的水库调度图优化研究 总被引:3,自引:0,他引:3
在满足发电保证率的条件下,以年均发电量最大为目标,建立了基于模拟的水库调度图优化模型。通过混合编码描述调度线的形状,采用蚁群算法优化关键点,求解模型。以隔河岩水电站为研究背景,开展隔河岩水库优化调度图编制研究。计算结果表明,较原设计方案,水库优化调度图年均发电量可提高0.32亿kW.h,提高幅度约1.21%,经济效益显著。 相似文献
7.
运用能自适应地改变挥发度系数的自适应蚁群算法研究流水车间作业排序问题,设计出解决该问题的算法步骤与流程。最后,通过仿真比较该算法与基本蚁群算法在解决该问题方面的性能,仿真结果表明,该算法在解决Flow Shop方面的问题上取得满意的效果。 相似文献
8.
为了克服蚁群算法难以直接处理连续优化问题的缺陷,在保持蚁群算法基本框架的基础上,将传统蚁群算法中蚂蚁由解分量的信息素和启发式的乘积值按比例来决定取值概率的方式,改为根据连续的概率分布函数来取值.并将函数在各个维上的极值点方向作为蚂蚁搜索的启发式信息.在标准测试函数上的试验结果显示,该算法不但具有较快的收敛速度,而且能够有效地提高解的精确性,增强了算法的稳定性. 相似文献
9.
基于带时间窗的车辆路径问题的蚁群算法 总被引:1,自引:0,他引:1
针对带时间窗车辆路径问题(Vehicle Routing Problem with Time Windows,VRPTW)的特点,对蚁群算法进行了改进,优化了其搜索解的能力和收敛速度,用实例证明了改进的蚁群算法对解决VRPTW的有效性. 相似文献
10.
11.
针对物流配送中的有时间窗车辆路径问题(VRPTW),提高优化性能,提出了一种改进的最大最小蚁群算法,并引入了局部搜索策略2-opt.在客户数目给定的情况下,本算法能够得到所求VRPTW的全局较优解,与基本蚁群算法和未改进的最大最小蚁群算法比较,具有更快的收敛速度和更高的收敛精度,并可扩展到一类相关的路径优化问题中.实验结果表明,本算法对于求解VRPTW效果很明显. 相似文献
12.
车间派工问题是学术界和实践界的关注热点,合理的派工方案可以缩短生产周期、有效利用资源、提高生产系统的响应能力.蚁群算法非常适合这类问题的处理,利用5个城市旅行商问题研究信息启发式因子、期望启发式因子、信息素挥发系数以及信息素强度这四个参数与迭代次数之间的关系,得出求解小规模问题的蚁群算法参数推荐值;建立车间派工问题的析取图模型,使其成为适合蚁群算法的一个自然表达;给出基于蚁群算法的车间派工问题实现步骤,以一个3*3问题为例在JBuilderX中得出总完工时间最短的派工方案,验证了蚁群算法在车间派工问题中的可行性和有效性. 相似文献
13.
Motivated by industrial applications we study a single-machine scheduling problem in which all the jobs are mutually independent and available at time zero. The machine processes the jobs sequentially and it is not idle if there is any job to be processed. The operation of each job cannot be interrupted. The machine cannot process more than one job at a time. A setup time is needed if the machine switches from one type of job to another. The objective is to find an optimal schedule with the minimal total jobs' completion time. While the sum of jobs' processing time is always a constant, the objective is to minimize the sum of setup times. Ant colony optimization (ACO) is a meta-heuristic that has recently been applied to scheduling problem. In this paper we propose an improved ACO-Branching Ant Colony with Dynamic Perturbation (DPBAC) algorithm for the single-machine scheduling problem. DPBAC improves traditional ACO in following aspects: introducing Branching Method to choose starting points; improving state transition rules; introducing Mutation Method to shorten tours; improving pheromone updating rules and introducing Conditional Dynamic Perturbation Strategy. Computational results show that DPBAC algorithm is superior to the traditional ACO algorithm. 相似文献
14.
YE Qiang LIU Xinbao LIU Lin YANG Shanglin School of Management Hefei University of Technology Hefei China 《武汉理工大学学报》2006,(Z3)
Motivated by industrial applications we study a single-machine scheduling problem in which all the jobs are mutu- ally independent and available at time zero.The machine processes the jobs sequentially and it is not idle if there is any job to be pro- cessed.The operation of each job cannot be interrupted.The machine cannot process more than one job at a time.A setup time is needed if the machine switches from one type of job to another.The objective is to find an optimal schedule with the minimal total jobs'completion time.While the sum of jobs'processing time is always a constant,the objective is to minimize the sum of setup times.Ant colony optimization(ACO)is a meta-heuristic that has recently been applied to scheduling problem.In this paper we propose an improved ACO-Branching Ant Colony with Dynamic Perturbation(DPBAC)algorithm for the single-machine schedul- ing problem.DPBAC improves traditional ACO in following aspects:introducing Branching Method to choose starting points;im- proving state transition rules;introducing Mutation Method to shorten tours;improving pheromone updating rules and introduc- ing Conditional Dynamic Perturbation Strategy.Computational results show that DPBAC algorithm is superior to the traditional ACO algorithm. 相似文献
15.
以图书物流中心车辆路径规划问题为研究对象,结合图书配送多品种小批量的特点,以配送路线最短为目标,在考虑车辆容量限制的条件下,建立基于零担运输策略的图书物流中心车辆路径规划模型;针对传统路径规划问题研究的不足,运用GPS导航系统重新定义了配送距离.用蚁群算法对所建模型进行求解与仿真,并结合实际案例给出优化结果,验证了模型及算法的有效性. 相似文献
16.
Support vehicles are part of the main body of airport ground operations, and their scheduling efficiency directly impacts flight delays. A mathematical model is constructed and the responsiveness of support vehicles for current operational demands is proposed to study optimization algorithms for vehicle scheduling. The model is based on the constraint relationship of the initial operation time, time window, and gate position distribution, which gives an improvement to the ant colony algorithm(AC... 相似文献
17.
针对蚁群算法在求解多任务联盟问题(multi-task coalition problem,MTCP)时存在的求解精度不高、迭代次数多的不足,利用量子计算的并行性,提出了一种求解多任务联盟问题的量子蚁群算法.首先,利用量子叠加态给出了基于Agent的量子编码,使1个Agent能占据空间中的2个位置;其次,为使旋转角获得合适的大小和方向,提出了一种基于信息素的自适应修正旋转角调整策略;最后,通过对量子编码进行观测,给出了基于量子态的蚂蚁寻优策略.实验结果表明,与已有的算法相比,该算法不仅能获得更高质量的解,而且收敛速度也有显著的提高. 相似文献
18.
文章针对以生产成本最小为目标,考虑差异性工人的双资源约束作业车间调度问题,提出参数按算法迭代结果自适应调整,基于蚂蚁流量自适应控制路径选择的混合蚁群算法,在算法前期扩大解搜索空间,后期加快算法收敛,实现算法性能的分阶段性能优化。通过对仿真实验结果的分析,该混合蚁群算法能有效求解双资源约束车间调度问题,且能够在保证得到较优调度结果的同时,具备优秀的收敛性能。 相似文献