首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
某高泥氧化铜矿石铜品位为4.26%,主要铜矿物为孔雀石,其次是辉铜矿、硅孔雀石和斜硅铜矿,脉石矿物主要为泥质粉砂岩、石英粉砂、绢云母、绿泥石等。针对氧化铜矿石浮选中矿泥会恶化浮选过程,大量消耗浮选药剂,影响浮选指标的问题,对磨矿细度为-0.074 mm占64.04%的矿石(-0.010 mm占14.05%)优先选出硫化铜矿物后的产品进行了直接硫化浮选和旋流器机械脱泥后的浮选试验。结果表明,用旋流器脱出的产率为12.64%、铜品位为4.82%的细泥采用浸出工艺处理,铜浸出率达95.26%;产率为87.36%、铜品位为3.32%的沉砂采用硫化浮选流程处理,可获得铜品位为24.75%、铜回收率为67.47%的铜精矿,铜综合回收率为84.01%;而直接硫化浮选仅获得铜品位为19.79%、铜回收率为75.09%的铜精矿,尾矿铜品位高达1.02%。与高泥氧化铜矿石的直接浮选相比,脱泥浮选工艺更加平稳、可控,铜回收指标更理想,浮选药剂用量更低,是一种较有发展前景的工艺形式。  相似文献   

2.
为提高某难选氧化铜矿的回收率,采用了泥砂分选工艺,对氧化率为97.29%、铜品位为4.20%,且矿石含泥量大的氧化铜矿开展了试验研究。研究结果表明:采用常规直接浮选获得的回收率较低,为73.10%;采用旋流器脱泥、脱泥后泥砂分选、矿泥部分采用螺旋溜槽回收铜、沉砂部分采用浮选法回收铜工艺,可获得产率为12.12%、铜品位为27.01%、铜回收率为75.96%的综合铜精矿,比直接浮选铜品位提高了2个百分点,铜回收率提高了2.86个百分点。  相似文献   

3.
魏转花 《金属矿山》2016,45(9):88-91
铜品位为3.70%的刚果(金)某高泥氧化型铜矿石的氧化率达75.81%,主要铜矿物为孔雀石,其次为硅孔雀石、辉铜矿等。为了确定该矿石的合适选矿工艺流程,进行了选矿试验。结果表明:矿石在磨矿细度为-74 μm占70%的情况下采用1次浮选脱泥、2粗2精2扫硫化浮选工艺处理,可获得铜品位为26.82%、铜回收率为72.48%的铜精矿;以硅孔雀石为主要含铜矿物的浮选尾矿采用摇瓶酸浸工艺处理,在硫酸用量为100 kg/t、液固比为3∶1、浸出时间为2 h的情况下,铜作业浸出率可达86.84%;浮选+酸浸工艺的总铜回收率为96.38%。  相似文献   

4.
为减少泥质矿物对孔雀石浮选的影响,采用预先脱泥浮选工艺,对某高氧化率、含泥量大的难处理氧化铜矿石进行试验研究,对于预先脱泥浮选工艺,细泥脱除率为9.42%的情况下,能获得综合铜精矿品位为27.16%,脱除的细泥作为产品转入湿法浸出作业,铜的浸出率能达到94.30%,折算成全流程的铜的回收率为12.02%,所以全流程的铜综合回收率为85.46%,与原矿直接浮选工艺对比,浮选综合铜精矿品位提高了3.88%,铜综合回收率提高了6.32%,充分说明了预先脱泥浮选-矿泥浸出的选冶联合工艺的效果。而且原矿经过旋流器预先脱泥处理后,在保证铜精矿回收率的同时,包括氟硅酸钠、硫化钠和捕收剂在用量上都有较大的降低空间,充分说明了预先脱泥浮选工艺的效果。  相似文献   

5.
采用浮选?浸出工艺处理含铜0.94%的玄武岩型氧化铜矿,该铜矿物氧化率高,嵌布粒度较细,属于低品位难选氧化铜。通过硫化浮选法回收部分氧化铜矿及硫化铜矿,可得到品位为16.2%,回收率为50.7%的浮选铜精矿,通过硫酸浸出法回收浮选尾矿中的细粒级铜矿物,浸出率达87%,此浮选-浸出工艺实现了铜矿物的有效回收。  相似文献   

6.
刘方华 《金属矿山》2019,48(11):73-78
国外某沉积岩型硫氧混合铜矿石铜品位为2.96%,为确定该矿石的合理开发利用工艺,在工艺矿物学研究的基础上进行了选矿试验研究。结果表明:①矿石中的主要铜矿物有辉铜矿、赤铜矿、孔雀石、硅孔雀石,主要脉石矿物有石英、方解石、白云石;辉铜矿、赤铜矿的嵌布粒度一般在0.02~0.30 mm,孔雀石、硅孔雀石的嵌布粒度主要为0.02~1.20 mm;硫化铜占总铜的60.14%,氧化铜占39.86%。②原矿在磨矿细度为-0.074 mm占73.60%的情况下,先以丁基黄药+乙基黄药为组合捕收剂采用2粗2精1扫流程浮选硫化铜矿物,再以硫化钠为硫化剂、丁基黄药+烷基羟肟酸为捕收剂采用1粗3精2扫流程浮选氧化铜矿物,获得了Cu品位为46.92%、回收率为71.57%的硫化铜精矿和Cu品位为29.23%、回收率为16.08%的氧化铜精矿,总精矿Cu品位为42.17%、回收率为87.65%,选别指标较好。  相似文献   

7.
刘方华 《金属矿山》2020,48(11):73-78
国外某沉积岩型硫氧混合铜矿石铜品位为2.96%,为确定该矿石的合理开发利用工艺,在工艺矿物学研究的基础上进行了选矿试验研究。结果表明:①矿石中的主要铜矿物有辉铜矿、赤铜矿、孔雀石、硅孔雀石,主要脉石矿物有石英、方解石、白云石;辉铜矿、赤铜矿的嵌布粒度一般在0.02~0.30 mm,孔雀石、硅孔雀石的嵌布粒度主要为0.02~1.20 mm;硫化铜占总铜的60.14%,氧化铜占39.86%。②原矿在磨矿细度为-0.074 mm占73.60%的情况下,先以丁基黄药+乙基黄药为组合捕收剂采用2粗2精1扫流程浮选硫化铜矿物,再以硫化钠为硫化剂、丁基黄药+烷基羟肟酸为捕收剂采用1粗3精2扫流程浮选氧化铜矿物,获得了Cu品位为46.92%、回收率为71.57%的硫化铜精矿和Cu品位为29.23%、回收率为16.08%的氧化铜精矿,总精矿Cu品位为42.17%、回收率为87.65%,选别指标较好。  相似文献   

8.
云南水源某铜矿石铜品位为0.88%,56.6%的铜以硫化铜形式存在,43.4%的铜以氧化铜形式存在。矿石矿物组成复杂、泥化现象严重。为给该铜矿石的合理开发利用提供参考,进行了先浮选硫化铜矿物再浮选氧化铜矿物的工艺流程试验。结果表明,在磨矿细度为-200目占80%条件下,以CaO(加入磨机中)和水玻璃为抑制剂、丁黄药为捕收剂经1粗2精硫化铜浮选,硫化铜浮选尾矿经水力旋流器脱泥后,沉砂以硫化钠为活化剂、羟肟酸钠+丁黄药为捕收剂经1粗2精2扫氧化铜浮选,获得的混合铜精矿铜品位为20.13%、回收率为72.81%。氧化铜浮选前经水力旋流器脱泥减轻了矿泥在矿浆中的循环、积累现象,使精矿由四级品提高到三级品,具有较好的经济效益。  相似文献   

9.
西藏某铜矿选矿试验研究   总被引:2,自引:2,他引:2  
对西藏某铜矿进行了浮选-浸出试验研究,采用先浮选硫化铜矿、后浮选氧化铜矿并在氧化铜矿浮选中添加少量辅助捕收剂YQC-64的工艺流程,可取得硫化铜精矿品位33.83%、氧化铜精矿品位16.84%、总精矿铜品位28.17%、总回收率87.06%的浮选指标。浮选尾矿用硫酸浸出,浸渣品位可降至0.11%。试验结果表明,该工艺较充分有效地回收了铜资源。  相似文献   

10.
<正> 二氧化硫浸出-浮选工艺包括用二氧化硫的饱和水溶液浸出大部分的氧化铜矿物;浸出液加温,使其生成亚硫酸铜-亚硫酸钙沉淀;浸出渣进行浮选,回收其中的硫化铜矿物及剩余的氧化铜矿物。该工艺处理汤丹难选氧化铜矿石的铜总回收率93.98%,铜精矿品位27.84%,最终尾矿含铜0.028%。  相似文献   

11.
Iron can be precipitated out of leaching solutions by using high pressure processes. The focus of this study is on the various iron phases forming during the pressure oxidation of sulfates. Artificial solutions were produced from sulfuric acid, copper and iron sulfates in an attempt to recreate the matrix composition and conditions used for copper sulfides autoclaving. The influence of the following factors was investigated: initial free acidity, initial copper concentration and initial iron concentration. There were three solid species formed in the autoclave: hematite, Basic Iron Sulfate (BIS) and hydronium jarosite. Free acid is the main factor influencing the composition of the residue. The increase of BIS content in the residue is not gradual and occurs over a change of a few grams per liter of sulfuric acid. Increasing copper sulfate concentration in the solution hinders the formation of BIS. This effect seems to be related to the buffering action of copper sulfate, decreasing the overall acid concentration and thus extending the stability range of hematite. Increasing iron concentration on the precipitate chemistry seems to promote BIS formation. At high iron level, the most noticeable effect is the inhibition of jarosite. The results were reported within a Cu-Fe-S ternary system and modeled. The modeling confirmed the experimental observations.  相似文献   

12.
针对含有铅、锌、铜、铁等元素的含锗金属冶炼渣提出了“硫酸氧化浸出-预中和-丹宁沉锗”的流程分离富集其中的元素锗,其中考察了硫酸氧化浸出的三种不同处理方法:氧压浸出、过硫酸钠氧化浸出、双氧水氧化浸出,得出了最佳条件,并通过丹宁沉锗后,可使沉锗渣中锗的品位提高至9%以上。  相似文献   

13.
用盐酸-硝酸混合酸分解试样,以氨水-氯化铵沉淀铁离子,使其与干扰元素分离。用盐酸溶解沉淀,用三氯化钛还原Fe3+,以二苯胺磺酸钠为指示剂,重铬酸钾标准滴定溶液测定镍铁合金中的全铁含量。实验结果表明,该方法具有良好的精密度,准确度高,能够满足对镍铁合金中全铁含量测定的要求。  相似文献   

14.
某铜金铁多金属矿中金、铜、硫铁矿共生关系密切,采用先硫后氧浮选铜金混合精矿、尾矿选铁的工艺流程,对有价元素进行了综合回收,获得了金铜精矿中铜品位17.31%、回收率65.34%,金品位52.40 g/t、回收率82.15%,铁精矿品位64.20%、回收率66.64%的技术指标。并对两种精矿产品进行了元素分析,有害元素均未超标。该工艺达到了资源综合利用和提高经济效益的目的。  相似文献   

15.
于福顺  贾洪利  杨思一 《金属矿山》2018,47(12):184-188
目前,去除水中重金属离子的常用方法存在处理成本较高、易造成二次污染等问题,为此,以浓度为100 mg/L的硫酸铜溶液作为模拟含重金属离子的废水,采用铁氧体沉淀—高梯度磁选分离技术去除水中铜离子。结果表明:在溶液初始pH为10.47,n(FeCl2)∶n(CuSO4)=1.0时,沉淀反应后铜离子沉淀率为99.98%,水中残余铜离子浓度仅0.0127 mg/L;生成的沉淀中按n(Fe3O4)∶n(Cu2+)=0.8加入磁铁矿作为磁种,在背景磁感应强度为1.0 T,采用直径为0.6 mm的网状介质盒,经高梯度强磁选可将93.39%的沉淀物快速分离出来。试验结果为应用高梯度磁选技术处理含重金属离子废水提供了理论依据,为该技术的工业应用提供了技术支撑。  相似文献   

16.
《Minerals Engineering》2007,20(9):945-949
Humic acid (HA) is an ubiquitous substance in the earth environment and is very important regarding soil fertility. It has been shown that HA can be used as a depressant for hematite in iron ore flotation. However, its removal from water is important in many circumstances, because the treatment of the water with chlorine results in the formation of trihalomethanes that are carcinogenic products.In this work the precipitate flotation of HA was studied. The experiments were carried out with the use of cetyl trimethyl ammonium bromide (CTAB) and dodecylamine (DDA) as precipitant collectors. The mean diameter of the particles were determined by light scattering for both precipitates (HA/CTAB and HA/DDA). The electrophoretic mobility studies showed that the interaction HA/CTAB was much stronger than HA/DDA.The precipitate flotation experiments carried out in a column cell showed that over 90% of the HA can be removed from water without the additional use of any other reagents.  相似文献   

17.
熊堃  左可胜  郑贵山 《中国矿业》2014,23(5):116-119
通过凝灰岩型氧化铜矿中微细矿泥(-20μm)上浮率试验、润湿接触角和泡沫水回收率测定,考察矿泥天然可浮性、泡沫水回收率、起泡剂种类及用量对矿泥可浮性的影响。结果表明,矿泥天然疏水性低,起泡剂不能增加矿泥的疏水性,但起泡剂增加了泡沫水回收率,泡沫水夹带是导致矿泥上浮的主要原因。不同种类起泡剂对微细矿泥的上浮率有不同的影响,影响程度按二乙二醇丁醚,MIBC、松醇油依次降低。为减少凝灰岩型氧化铜矿浮选中矿泥的影响,选择合适的起泡剂和降低起泡剂用量是必要的。  相似文献   

18.
《Minerals Engineering》2002,15(11):879-883
Low-grade sulphidic molybdenum ores were treated by using a combined processing route for a comprehensive recovery of molybdenum, copper, and other minor elements. As the first step, oxidation roasting was used to convert most of sulphides into metal oxides, during which 85–90% of sulphur was removed. Then both water and dilute sulphuric acid leaching of the roast were tested, in order to remove silica, iron and other impurities from the roast. Both copper and molybdenum were recovered one after another from the filtrates via cementation by iron powder under controlled temperature and pH conditions. Recovery for both elements was in all cases over 99%. Reasonable separation efficiency for copper and molybdenum was achieved from the water leach solutions. The leached cakes were dissolved in ammonia to recover the molybdenum by crystallisation as ammonium-dimolybdate. The proposed roasting, leaching and separation steps give a feasible alternative for a comprehensive processing of low grade molybdenum ores.  相似文献   

19.
广东某含硫铁低品位铜矿石主要有用元素铜、硫、铁品位分别为0.51%、27.68%、34.07%。铜赋存状态复杂,以次生硫化铜形式存在的铜占总铜的54.91%,水溶性铜占总铜的26.39%,采用常规浮选方法选别铜回收率低。为探索该矿石中铜、硫、铁的高效分选工艺,对其进行了选冶工艺研究。结果表明:原矿磨细至-0.074 mm占72%时,采用pH=3的硫酸溶液为浸出剂,在液固比为4 mL/g、搅拌转速为1 400 r/min、浸出时间为24 h条件下浸铜,可以获得铜浸出率为93.33%的指标;铜浸渣经自来水搅拌洗涤至pH=6以后,以丁黄药为捕收剂、2号油为起泡剂,经1粗1扫硫浮选,可获得硫品位为48.44%、对铜浸渣回收率为95.57%的高品质硫精矿;浮硫尾矿在磁介质为Φ2 mm棒介质、脉动冲程为16 mm、冲次为280次/min、背景磁感应强度为0.6 T条件下,经1次高梯度强磁选选铁,可获得铁品位为51.42%、对铜浸渣回收率为17.02%的铁精矿。以上试验结果说明,采用铜浸出-硫浮选-铁磁选的工艺流程可以实现矿石中铜硫铁的有效分离。  相似文献   

20.
Recoverable economic copper sulphide minerals such as chalcopyrite, bornite, chalcocite and covellite often occur together in varying proportions in the major copper-bearing ores, and have individual flotation requirements and characteristics. Pyrite also occurs in these ores to varying extents as the sulphide gangue, and is problematic because of its natural tendency to float quickly and easily. In a bulk sulphide float, selectivity against pyrite is desirable, particularly if it does not host other paymetals such as gold or silver. At the same time it is a requirement to float all of the copper sulphides despite their electrochemical differences. The electrochemistry and semiconductor properties of these minerals are reviewed, together with implications for flotation with and without collector addition. Mixed collector systems for the improved flotation of these sulphides are proposed as a solution. The use of xanthate and dithiophosphate in the collector suite allows the co-existence of dixanthogen and free dithiophosphate radical because the latter has a higher redox potential requirement than xanthate to oxidize to the dithiolate. Because some of these minerals require dixanthogen, and others, free thiolate, to generate surface hydrophobicity, a bulk flotation of all the species becomes possible in the overlapping area of Eh and pH between the two dithiolate equilibrium lines on the Pourbaix Diagram. The arsenic-signature copper minerals are added to the study, since many copper operations encounter arsenic as a penalty element in the saleable concentrate. It is shown that the addition of arsenic to the copper and iron sulphides alters the semiconductor and electrochemistry properties, and in turn, its flotation characteristics. The degree of mineral association and liberation between these minerals can be a complicating factor due to textural associations, and should also be considered in the process as a next step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号