首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical model of drain current of Si/SiGe heterostructure p-channel MOSFETs is presented. A simple polynomial approximation is used to model the sheet carrier concentration (p/sub s//sup H/) in the two-dimensional hole gas at the Si/SiGe interface. The interdependence of p/sub s//sup H/ and the hole concentration at the Si/SiO/sub 2/ interface (p/sub s//sup S/) is taken into account in the model, which considers current flow at both the Si/SiGe and the Si/SiO/sub 2/ interfaces. This model is applicable to compressively strained SiGe buried-channel heterostructure PMOSFETs as well as tensile-strained surface-channel PMOSFETs. The model has been implemented in SABER, a circuit simulator. The results from the model show an excellent agreement with the experimental data.  相似文献   

2.
For the first time, the tradeoffs between higher mobility (smaller bandgap) channel and lower band-to-band tunneling (BTBT) leakage have been investigated. In particular, through detailed experiments and simulations, the transport and leakage in ultrathin (UT) strained germanium (Ge) MOSFETs on bulk and silicon-on-insulator (SOI) have been examined. In the case of strained Ge MOSFETs on bulk Si, the resulting optimal structure obtained was a UT low-defect 2-nm fully strained Ge epi channel on relaxed Si, with a 4-nm Si cap layer. The fabricated device shows very high mobility enhancements >3.5/spl times/ over bulk Si devices, 2/spl times/ mobility enhancement and >10/spl times/ BTBT reduction over 4-nm strained Ge, and surface channel 50% strained SiGe devices. Strained SiGe MOSFETs having UT (T/sub Ge/<3 nm) very high Ge fraction (/spl sim/ 80%) channel and Si cap (T/sub Si cap/<3 nm) have also been successfully fabricated on thin relaxed SOI substrates (T/sub SOI/=9 nm). The tradeoffs in obtaining a high-mobility (smaller bandgap) channel with low tunneling leakage on UT-SOI have been investigated in detail. The fabricated device shows very high mobility enhancements of >4/spl times/ over bulk Si devices, >2.5/spl times/ over strained silicon directly on insulator (SSDOI; strained to 20% relaxed SiGe) devices, and >1.5/spl times/ over 60% strained SiGe (on relaxed bulk Si) devices.  相似文献   

3.
The mobility and subthreshold characteristics of TiN-gate, dual-channel heterostructure MOSFETs consisting of strained-Si-Si/sub 0.4/Ge/sub 0.6/ on relaxed Si/sub 0.7/Ge/sub 0.3/ are studied for strained-Si cap layer thicknesses ranging from 3 to 10 nm. The thinnest Si cap sample (3 nm) yields the lowest subthreshold swing (80 mV/dec) and the highest hole mobility enhancement (2.3X at a vertical effective field of 1 MV/cm). N-MOSFETs show the expected electron mobility enhancement (1.8X) for 10- and 5-nm-thick Si cap samples, which reduces to 1.6X for an Si cap thickness of 3 nm. For Si cap and gate oxide thicknesses both equal to 1 nm, simulations predict a moderate degradation in p-MOSFET subthreshold swing, from 73 to 85 mV/dec, compared to that for the Si control.  相似文献   

4.
This paper presents an overview of the physics, modeling, and circuit implications of RF broad-band noise, low-frequency noise, and oscillator phase noise in SiGe heterojunction bipolar transistor (HBT) RF technology. The ability to simultaneously achieve high cutoff frequency (f/sub T/), low base resistance (r/sub b/), and high current gain (/spl beta/) using Si processing underlies the low levels of low-frequency 1/f noise, RF noise, and phase noise of SiGe HBTs. We first examine the RF noise sources in SiGe HBTs and the RF noise parameters as a function of SiGe profile design, transistor biasing, sizing, and operating frequency, and then show a low-noise amplifier design example to bridge the gap between device and circuit level understandings. We then examine the low-frequency noise in SiGe HBTs and develop a methodology to determine the highest tolerable low-frequency 1/f noise for a given RF application. The upconversion of 1/f noise, base resistance thermal noise, and shot noises to phase noise is examined using circuit simulations, which show that the phase noise corner frequency in SiGe HBT oscillators is typically much smaller than the 1/f corner frequency measured under dc biasing. The implications of SiGe profile design, transistor sizing, biasing, and technology scaling are examined for all three types of noises.  相似文献   

5.
In this letter, we report germanium (Ge) p-channel MOSFETs with a thin gate stack of Ge oxynitride and low-temperature oxide (LTO) on bulk Ge substrate without a silicon (Si) cap layer. The fabricated devices show 2 /spl times/ higher transconductance and /spl sim/ 40% hole mobility enhancement over the Si control with a thermal SiO/sub 2/ gate dielectric, as well as the excellent subthreshold characteristics. For the first time, we demonstrate Ge MOSFETs with less than 100-mV/dec subthreshold slope.  相似文献   

6.
High-performance nMOSFETs using a novel strained Si/SiGe CMOS architecture   总被引:2,自引:0,他引:2  
Performance enhancements of up to 170% in drain current, maximum transconductance, and field-effect mobility are presented for nMOSFETs fabricated with strained-Si channels compared with identically processed bulk Si MOSFETs. A novel layer structure comprising Si/Si/sub 0.7/Ge/sub 0.3/ on an Si/sub 0.85/Ge/sub 0.15/ virtual substrate (VS) offers improved performance advantages and a strain-compensated structure. A high thermal budget process produces devices having excellent on/off-state drain-current characteristics, transconductance, and subthreshold characteristics. The virtual substrate does not require chemical-mechanical polishing and the same performance enhancement is achieved with and without a titanium salicide process.  相似文献   

7.
A drive-current enhancement in NMOS with a compressively strained SiGe structure, which had been a difficult challenge for CMOS integration with strained SiGe high-hole-mobility PMOS, was successfully achieved using a Si-SiGe heterostructure low electric field channel of optimum thickness. A 4-nm-thick Si low-field-channel NMOS with a 4-nm-thick Si/sub 0.8/Ge/sub 0.2/ layer improved drive current by 10% with a 20% reduction in gate leakage current compared with Si-control, while suppressing threshold-voltage rolloff characteristic degradation, and demonstrated excellent I/sub on/--I/sub off/ characteristics of I/sub on/ = 1 mA//spl mu/m for I/sub off/ = 100 nA//spl mu/m. These results are the best in ever reported NMOS with a compressively strained SiGe structure and indicate that a Si-SiGe heterostructure low-field-channel NMOS integrated with a compressively strained SiGe channel PMOS is a promising candidate for high-speed CMOS in 65-nm node logic technology.  相似文献   

8.
Low-frequency (1/f) noise in near-fully-depleted Thin-Film Silicon-On-Insulator (TFSOI) CMOS transistors designed for sub-l-V applications is investigated in the subthreshold region, linear region, and saturation region of operation for the first time. The noise in these surface-channel devices is composed of a bias invariant 1/f component and a bias dependent generation-recombination (G/R) component that becomes enhanced in the subthreshold region of operation for both n- and p-channel MOSFETs. Results presented in this letter are consistent with the noise being dominated by a number fluctuation model. These results demonstrate that the bias independent 1/f noise spectrum of the n-channel TFSOI MOSFET is comparable to the 1/f noise level found in conventional bulk silicon submicron CMOS fabrication processes  相似文献   

9.
Chemical-mechanical-polishing (CMP) was used to smooth the surface of a SiGe substrate, on which strained-Si n- and p-MOSFETs were fabricated. By applying CMP after growing the SiGe buffer layer, the surface roughness was considerably reduced, namely, to 0.4 nm (rms). A strained-Si layer was then successfully grown on the CMP-treated SiGe substrate. The fabricated strained-Si MOSFETs showed good turn-off characteristics, (i.e., equivalent to those of Si control devices). Moreover, capacitance-voltage (CV) measurements revealed that the quality of the gate oxide of the strained-Si devices was the same as that of the Si control devices. Flat-band and threshold voltages of the strained-Si devices were different from those of the Si control devices mainly due to band discontinuity. Electron and hole mobilities of strained-Si MOSFETs under a vertical field up to 1.5 MV/cm increased by 120% and 42%, respectively, compared to the universal mobility. Furthermore, current drive of the n- and p-MOSFETs (L/sub eff//spl ges/0.3 /spl mu/m) was increased roughly by 70% and 50%, respectively. These improvements in characteristics indicate that CMP of the SiGe substrate is a critical technique for developing high-performance strained-Si CMOS.  相似文献   

10.
This paper provides evidence that, as a result of constant-field scaling, the peak$f_T$(approx. 0.3$hbox mA/muhbox m$), peak$f_ MAX$(approx. 0.2$hbox mA/muhbox m$), and optimum noise figure$ NF_ MIN$(approx. 0.15$hbox mA/muhbox m$) current densities of Si and SOI n-channel MOSFETs are largely unchanged over technology nodes and foundries. It is demonstrated that the characteristic current densities also remain invariant for the most common circuit topologies such as MOSFET cascodes, MOS-SiGe HBT cascodes, current-mode logic (CML) gates, and nMOS transimpedance amplifiers (TIAs) with active pMOSFET loads. As a consequence, it is proposed that constant current-density biasing schemes be applied to MOSFET analog/mixed-signal/RF and high-speed digital circuit design. This will alleviate the problem of ever-diminishing effective gate voltages as CMOS is scaled below 90 nm, and will reduce the impact of statistical process variation, temperature and bias current variation on circuit performance. The second half of the paper illustrates that constant current-density biasing allows for the porting of SiGe BiCMOS cascode operational amplifiers, low-noise CMOS TIAs, and MOS-CML and BiCMOS-CML logic gates and output drivers between technology nodes and foundries, and even from bulk CMOS to SOI processes, with little or no redesign. Examples are provided of several record-setting circuits such as: 1) SiGe BiCMOS operational amplifiers with up to 37-GHz unity gain bandwidth; 2) a 2.5-V SiGe BiCMOS high-speed logic chip set consisting of 49-GHz retimer, 40-GHz TIAs, 80-GHz output driver with pre-emphasis and output swing control; and 3) 1-V 90-nm bulk and SOI CMOS TIAs with over 26-GHz bandwidth, less than 8-dB noise figure and operating at data rates up to 38.8 Gb/s. Such building blocks are required for the next generation of low-power 40–80 Gb/s wireline transceivers.  相似文献   

11.
《Microelectronic Engineering》2007,84(9-10):2054-2057
The influence of substrate heterostructure (Si/ SiGe/ Si) on performance of MOSFETs with high-k/metal gate stacks has been studied. In particular, the effects of the channel thickness on the performance and short channel properties are evaluated. It is found that these heterostructures, when designed optimally, can not only exhibit high mobility but also excellent control of short channel effects down to 70 nm gate length.  相似文献   

12.
Design and Scaling of W-Band SiGe BiCMOS VCOs   总被引:1,自引:0,他引:1  
This paper discusses the design of 77-106 GHz Colpitts VCOs fabricated in two generations of SiGe BiCMOS technology, with MOS and HBT varactors, and with integrated inductors. Based on a study of the optimal biasing conditions for minimum phase noise, it is shown that VCOs can be used to monitor the mm-wave noise performance of SiGe HBTs. Measurements show a 106 GHz VCO operating from 2.5 V with phase noise of -101.3 dBc/Hz at 1 MHz offset, which delivers +2.5 dBm of differential output power at 25degC, with operation verified up to 125degC. A BiCMOS VCO with a differential MOS-HBT cascode output buffer using 130 nm MOSFETs delivers +10.5 dBm of output power at 87 GHz.  相似文献   

13.
Luy  J.F. Jorke  H. Kibbel  H. Casel  A. Kasper  E. 《Electronics letters》1988,24(22):1386-1387
The first experimental results on Si/SiGe heterostructure mixed tunnelling avalanche transit time (MITATT) diodes are reported. The layers are grown by MBE. At 103 GHz a very low noise CW output of 25 mW is obtained. With an optimisation of the design higher output powers with still low noise operation are expected  相似文献   

14.
We introduce a strained‐SiGe technology adopting different thicknesses of Si cap layers towards low power and high performance CMOS applications. By simply adopting 3 and 7 nm thick Si‐cap layers in n‐channel and p‐channel MOSFETs, respectively, the transconductances and driving currents of both devices were enhanced by 7 to 37% and 6 to 72%. These improvements seemed responsible for the formation of a lightly doped retrograde high‐electron‐mobility Si surface channel in nMOSFETs and a compressively strained high‐hole‐mobility Si0.8Ge0.2 buried channel in pMOSFETs. In addition, the nMOSFET exhibited greatly reduced subthreshold swing values (that is, reduced standby power consumption), and the pMOSFET revealed greatly suppressed 1/f noise and gate‐leakage levels. Unlike the conventional strained‐Si CMOS employing a relatively thick (typically > 2 µm) SixGe1‐x relaxed buffer layer, the strained‐SiGe CMOS with a very thin (20 nm) Si0.8Ge0.2 layer in this study showed a negligible self‐heating problem. Consequently, the proposed strained‐SiGe CMOS design structure should be a good candidate for low power and high performance digital/analog applications.  相似文献   

15.
The hybrid integration of ultrathin-body partially insulated MOSFETs (UTB PiFETs) and a bulk MOSFET was investigated. With a partial silicon-on-insulator (SOI) process using a SiGe sacrificial layer, UTB PiFETs with thin buried insulation layers were realized on the same bulk Si wafer with a bulk MOSFET. A partially insulating oxide (PiOX)-under-channel PiFET is suitable from the viewpoint of high-speed operation due to its SOI-like characteristics. On the other hand, a PUSD PiFET is useful from the viewpoint of low stand-by power operation due to its low junction leakage current. Through hybrid integration, not only multiple VTH's can be obtained but also the technical difficulties of bulk MOSFETs can be alleviated. Thus, hybrid integration is a very useful process technique to implement integrated-circuit products with optimized power and performance management.  相似文献   

16.
This paper describes an extensive experimental study of TiN/HfO/sub 2//SiGe and TiN/HfO/sub 2//Si cap/SiGe gate stacked-transistors. Through a careful analysis of the interface quality (interface states and roughness), we demonstrate that an ultrathin silicon cap is mandatory to obtain high hole mobility enhancement. Based on quantum mechanical simulations and capacitance-voltage characterization, we show that this silicon cap is not contributing any silicon parasitic channel conduction and degrades by only 1 /spl Aring/ the electrical oxide thickness in inversion. Due to this interface optimization, Si/sub 0.72/Ge/sub 0.28/ pMOSFETs exhibit a 58% higher mobility at high effective field (1 MV/cm) than the universal SiO/sub 2//Si reference and a 90% higher mobility than the HfO/sub 2//Si reference. This represents one of the best hole mobility results at 1 MV/cm ever reported with a high-/spl kappa//metal gate stack. We thus validate a possible solution to drastically improve the hole mobility in Si MOSFETs with high-/spl kappa/ gate dielectrics.  相似文献   

17.
A novel N-channel Si/SiGe heterostructure dynamic threshold voltage MOSFET (N-HDTMOS) has been proposed and fabricated. The Si/SiGe N-HDTMOS consists of an unstrained surface Si channel and heavily p-type doped SiGe body. The potential of the conduction band edge of the surface Si channel can be lowered by introducing a heavily p-type doped SiGe layer into a suitable position in the body region. As a result, the N-HDTMOS shows a threshold voltage reduction and a body effect factor (/spl gamma/) enhancement while keeping high doping concentration in the SiGe layer. The fabricated SiGe N-HDTMOS exhibits superior properties, that is, 0.1 V reduction of V/sub th/, 1.5 times enhancement of /spl gamma/, and 1.3 times saturated current, as compared with those of Si N-DTMOS.  相似文献   

18.
This letter reports on a device layer transfer (based on thermal bonding and grinding backside Si) process and device characteristics of Si MOSFETs on a flexible substrate, focusing mainly on the mechanical bendability of the device and resistance to fatigue. The results demonstrated a well-optimized bonding process, as indicated by the nearly indiscernible performance difference (e.g., subthreshold slope, V/sub th/, and I/sub dsat/) before and after the bonding of Si with the flexible substrate. The device characteristics indicate excellent bendability of Si MOSFETs on flexible substrate (e.g., for radius tested down to /spl plusmn/72 mm) and good immunity to fatigue (e.g., negligible performance drift tested up to /spl sim/10/sup 3/ bending cycles with a radius of /spl plusmn/126 mm). Results suggest the feasibility of this approach in achieving high-performance MOSFETs for applications in performance-sensitive and flexible electronics.  相似文献   

19.
We have fabricated strained SiGe vertical P-channel and N-channel metal-oxide-semiconductor field-effect transistors (MOSFETs) by Ge ion implantation and solid phase epitaxy. No Si cap is needed in this process because Ge is implanted after gate oxide growth. The vertical MOSFETs are fabricated with a channel length below 0.2 μm without sophisticated lithography and the whole process is compatible with a regular CMOS process. The enhancement for the hole and electron mobilities in the direction normal to the growth plane of strained SiGe over that of bulk Si has been demonstrated in this vertical MOSFET device structure for the first time. The drain current for the vertical SiGe MOSFETs has been found to be enhanced by as much as 100% over the Si control devices and the drain current for the vertical SiGe NMOSFETs has been enhanced by 50% compared with the Si control de, ices on the same wafer. The electron mobility enhancement in the normal direction is not as significant as that for holes, which is in agreement with theoretical predictions  相似文献   

20.
Device-level simulation capabilities have been developed to investigate low-frequency noise behavior in p-type Si0.7Ge0.3/Si heterostructure MOS (SiGe p-HMOS) transistors. The numerical model is based on the impedance field method; it accounts for a trap-induced carrier number fluctuation, a layer-dependent correlated mobility fluctuation, and a Hooge mobility fluctuation in the buried and parasitic surface channels, respectively. Simulations based on such models have been conducted for SiGe p-HMOS transistors, and the results have been carefully correlated with experimental data. Quantitative agreement has been obtained in terms of the noise level dependence on gate biases, drain currents, and body biases, revealing the important role of the dual channels in the low-frequency noise behavior of SiGe p-HMOS devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号