首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 85 毫秒
1.
基于Aspen Plus软件的煤气化过程模拟评述   总被引:1,自引:0,他引:1  
煤气化技术是实现煤清洁利用的有效途径,是煤炭转化的关键技术。通过利用Aspen Plus过程模拟软件建立气化炉模型,可以低成本、低风险、高效率的研究评估气化炉的气化性能和考察各项操作条件对气化产物的影响,寻找最佳操作点。总结了国内外科研机构已报道的各型基于Aspen Plus软件开发的气流床气化炉模型,分析了各种气化炉模型的区别与联系,并根据实践经验提出了煤气化过程模拟的发展方向。  相似文献   

2.
肖祥  周臻  黄歆雅 《广东化工》2012,39(18):22-24
文章以过程模拟软件Aspen Plus为工具,建立了以纯氧为气化剂的气流床煤气化的数学模型,模拟计算了Texaco气化炉的制气过程;并利用该模型模拟研究了氧煤比和水煤浆浓度对煤气化指标的影响。结果表明:水煤浆浓度和氧煤比是影响水煤浆气化过程和出口煤气成分的主要因素,同时提出了提高出口煤气有效成分(CO+H2)的措施。  相似文献   

3.
Aspen Plus是一种基于稳态化工模拟、优化、灵敏度分析和经济评价的大型化工流程模拟软件,由于其优良的性能而被广泛应用于化工领域。文章主要介绍了Aspen Plus软件的特点,并且综述了近几年来Aspen Plus在煤气化领域中的研究成果和发展概况。  相似文献   

4.
利用Aspen Plus模拟了甲醇合成过程,并分析了循环比对粗甲醇产量、碳转化率、粗甲醇含量及循环气压缩机功耗的影响。结果表明:粗甲醇中甲醇含量为93.32mol%,反应器1出口物料中H2、CO、CO2、甲醇含量分别为73.46mol%、4.47mol%、2.63mol%、13.80mol%,反应器2出口物料中H2、CO、CO2、甲醇含量分别为71.93mol%、2.35mol%、2.58mol%、17.03mol%;循环比由1.06增加到2.26,粗甲醇产量由2430kmol/h提高到2505kmol/h,碳转化率由96.02%提高到98.25%,粗甲醇含量由93.5mol%降低至92.8mol%,循环气压缩机功耗由899kW增加到1788kW。  相似文献   

5.
简要介绍了大型化工流程模拟软件Aspen Plus,并对其构建煤制天然气流程模型的方法进行概述。同时,针对近年来Aspen Plus软件在煤制天然气领域中的工艺模拟、反应器研究、设计优化等方面的应用情况进行综述,并指出当前研究的不足和今后的发展方向。  相似文献   

6.
刘娜  黄雪莉 《煤炭转化》2013,36(1):65-67
运用Aspen Plus软件进行了煤干燥过程的模拟计算,研究了煤干燥的主要操作参数(干燥介质种类、温度、流量和湿度)与干煤出口温度之间的关系.结果表明,干煤出口温度与干燥介质种类并无显著关系,干煤出口温度随着干燥介质的温度、流量的增大先缓慢增加后迅速增加.当干燥介质流量较小时,干煤出口温度随着干燥介质含水量的增加略有增加;而当干燥介质流量较大时干煤出口温度随着干燥介质含水量基本不变.  相似文献   

7.
基于Aspen Plus的粉煤气化模拟   总被引:6,自引:0,他引:6  
以Aspen Plus为模拟工具,选择反应平衡模型,并应用Gibbs自由能最小化方法建立了Shell粉煤气化模型;通过对神华、沾化和天碱煤种的气化模拟,对建立的模型进行了检验,结果表明:用N2输送粉煤的气化过程能够很好地模拟,而用CO2输送粉煤的气化过程模拟偏差较大.以沾化煤种为例,检验了气化炉散热损失取煤总热值约2%的合理性;研究了不同操作条件下的气化性能,结果表明:提高温度和压力可使气化过程得到强化.  相似文献   

8.
煤炭是我国的主要能源,地下煤气化技术是未来煤炭工业发展的重要技术之一。根据不同种类煤炭慢速热解过程中主要元素迁移规律建立了煤炭热解预测模型。参考地下煤气化过程特点对气化反应进行简化,确定了需要考虑的主要反应后选择合适的动力学参数,编写反应动力学方程嵌入Aspen Plus流程模拟软件中,结合煤炭热解模型建立地下煤气化动力学模型。对比模拟结果与试验数据,并进行了误差分析,结果表明:模型预测产出气组成的绝对误差均在12%以内,为地下煤气化工艺设计提供了一定的参考价值。  相似文献   

9.
张文娟  周润英  姚杰  梅静梁 《安徽化工》2012,38(1):59-62,65
采用Aspen Plus软件对淮南煤气化进行了稳态流程模拟研究,结果表明:O2流量的增大导致气化温度快速升高;合成气中CO、H2以及有效合成气(CO+H2)的体积分率随O2流量的增加呈先增大后减小的趋势;CO2和H2O的变化趋势则相反。氧煤比在0.03~0.17kg/kg区域内,有效气体积分率均大于60%;且在氧煤比为0.1kg/kg时,有效合成气体积分率达到最大值64.2%。氧煤比在0.06~0.14kg/kg区域内,汽氧比的增大会导致气化温度随之减小,并直接影响合成气组分。合成气中,CO、H2、CH4以及有效合成气(CO+H2)的体积分率随汽氧比的增大而降低;H2O和CO2体积分率则随之增大。  相似文献   

10.
在Aspen Plus软件平台上,以标定数据为主要输入数据,以产品控制指标为主要约束条件,建立了某厂原油常减压蒸馏装置的稳态模拟流程。在建立过程中,采取对装置流程进行简化处理、将总板效率作为调节变量等方法,使模拟流程的工艺参数、物料平衡和产品恩氏蒸馏数据与生产基本相符。  相似文献   

11.
赵海坤  张泳建  孟凡会  李忠 《煤化工》2012,40(4):17-19,23
以发电规模为135 MW的煤矸石发电厂生产装置为基础,采用模拟软件Aspen Plus,对煤矸石发电系统进行了模拟优化。在进煤量为87 t/h时,煤矸石与原煤的实际配比为0.40∶0.60;当进煤量不变,经模拟优化后,过量空气系数为1.20,空气预热温度为260℃,煤矸石与原煤最大配比可达到0.46∶0.54,煤矸石的用量提高了15%,每年可多消耗煤矸石4.18万t。  相似文献   

12.
运用Aspen Plus软件对磨煤干燥过程进行模拟与分析,可以比较准确地知道CMD工段的燃料气、低低压氮气、助燃空气、稀释空气、电力等公用工程的消耗,优化干燥工艺流程,为工程设计和生产操作提供指导。  相似文献   

13.
以高水分褐煤为例,介绍了利用Aspen Plus化工流程模拟软件建立煤热解过程简化模型的方法及步骤.阐述了CPD模型模拟参数的设置过程,并利用Aspen Plus软件对煤热解过程进行了模拟计算,将得出的模拟值与实际值进行了比较.同时,对煤热解模拟过程及结果进行了分析,给煤热解过程的工艺开发和工艺优化提供了参考依据.  相似文献   

14.
王国荣 《广州化工》2010,38(6):230-233
利用Aspen Plus流程模拟软件,对液化气分离装置进行了模拟,模拟结果与实际生产比较吻合。在此基础上,利用灵敏度分析工具,对塔压,回流比以及塔底抽出量等重要操作参数进行了优化。通过操作参数的优化,液化气分离装置的分离效果有了显著的提高。  相似文献   

15.
利用Aspen Plus对超大规模空分工艺进行了全流程模拟。模拟得到了气体产品和液体产品的成分、主压机和辅压机的功率及所需流量、氧气的回收率以及膨胀机所需流量,揭示了膨胀机所需流量对氧气回收率、产生的冷量以及液氧产品比例的影响。利用该模型,能够为工艺方案比选、优化设计提供模拟和预测。  相似文献   

16.
霍月洋 《广州化工》2015,(5):123-124,135
采用化工流程模拟软件Aspen Plus建立固体物质溶解度的计算模型,并利用灵敏度分析功能研究不同温度下的固体溶解度。以计算不同温度下KNO3和Na Cl在水中的溶解度为例说明了计算过程,模拟计算结果与文献数据的最大偏差分别1.65%和1.12%,平均相对偏差分别为0.81%和0.69%,吻合良好。研究结果表明本文建立的固体物质的溶解度计算方法是可行的,可为工业生产提供可靠的数据。  相似文献   

17.
薛科创 《山东化工》2014,(4):159-162
化工过程模拟是通过计算机对化工生产过程的再现,由于计算量大,必须通过相应的化工模拟软件来实现。Aspen Plus,尤其是Aspen Plus 7.3,由于其计算精确、运行速度快,成为化工设计者的首选软件。本文通过介绍利用Aspen Plus 7.3进行严格精馏模拟,说明了严格精馏模拟的应用范围以及利用Aspen Plus 7.3进行严格精馏模拟的方法。  相似文献   

18.
Aspen Plus是生产装置设计、稳态模拟和优化的大型通用流程模拟系统。全球各大化工、石化、炼油等过程工业制造企业及著名的工程公司都是Aspen Plus的用户。举例介绍了Aspen Plus模拟在氟化工中的应用,分析可能存在的困难,并展望Aspen Plus模拟在氟化工中的应用前景。  相似文献   

19.
郑志行  李谦  张家元  周浩宇 《化工进展》2021,40(4):2152-2160
基于Aspen Plus软件的Gibbs自由能最小化法,本文建立了煤粉在Shell气流床中的气化模型。该模型预测气化温度和煤气组成,与文献试验结果吻合良好。利用Aspen Plus的灵敏度分析模块研究了氧煤比、氧气体积分数和氧气预热温度对气化结果的影响,并进行了正交模拟计算,研究了以上3种因素共同作用的结果。结果表明:氧煤比增加使碳转化率升高,冷煤气效率先升高后降低,并在氧煤比为0.9kg/kg时取得最大值77.72%;氧气体积分数增加使煤气热值、碳转化率和冷煤气效率升高,氧煤比为0.8kg/kg且氧气体积分数为50%时,冷煤气效率可达82.6%;氧气预热温度增加使碳转化率、冷煤气效率升高,氧煤比为0.8kg/kg且氧气预热温度为600℃时,冷煤气效率可达82%。通过正交模拟计算综合分析,氧煤比对冷煤气效率和碳转化率的影响作用占首位,氧气体积分数对煤气热值、有效气体积分数、煤气产率的影响作用占首位,氧气预热温度对煤气化指标影响较小。在实验范围内,当氧煤比0.8kg/kg、氧气体积分数100%、氧气预热温度300℃时的煤气热值达到最大值3011kcal/m3;当氧煤比为0.8kg/kg、氧气体积分数60%~100%、氧气预热温度300~500℃时的冷煤气效率达到最大值83.46%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号