首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
In this paper, the effect of nano-Si3N4 additives and plasma treatment on the wear behavior of Al2O3-8YSZ ceramic coatings was studied. Nano-Al2O3, nano-8YSZ (8 wt.% Y2O3-stabilized ZrO2) and nano-Si3N4 powders were used as raw materials to fabricate four types of sprayable feedstocks. Plasma treatment was used to improve the properties of the feedstocks. The surface morphologies of the ceramic coatings were observed. The mechanical properties of the ceramic coatings were measured. The dry sliding wear behavior of the Al2O3-8YSZ coatings with and without Si3N4 additives was studied. Nano-Si3N4 additives and plasma treatment can improve the morphologies of the coatings by prohibiting the initiation of micro-cracks and reducing the unmelted particles. The hardness and bonding strength of AZSP (Al2O3-18 wt.% 8YSZ-10 wt.% Si3N4-plasma treatment) coating increased by 79.2 and 44% compared to those of AZ (Al2O3-20 wt.% 8YSZ) coating. The porosity of AZSP coating decreased by 85.4% compared to that of AZ coating. The wear test results showed that the addition of nano-Si3N4 and plasma treatment could improve the wear resistance of Al2O3-8YSZ coatings.  相似文献   

2.
Effects of plasma spraying conditions on wear resistance of nanostructured Al2O3-8 wt.%TiO2 coatings plasma-sprayed with nanopowders were investigated in this study. Five kinds of nanostructured coatings were plasma-sprayed on a low-carbon steel substrate by varying critical plasma spray parameter (CPSP) and spray distance. The coatings consisted of fully melted region of γ-Al2O3 and partially melted region, and the fraction of the partially melted regions and pores decreased with increasing CPSP or decreasing spray distance. The hardness and wear test results revealed that the hardness of the coatings increased with increasing CPSP or decreasing spray distance, and that the hardness increase generally led to the increase in wear resistance, although the hardness and wear resistance were not correlated in the coating fabricated with the low CPSP. The main wear mechanism was a delamination one in the coatings, but an abrasive wear mode also appeared in the coating fabricated with the low CPSP. According to these wear mechanisms, the improvement of wear resistance in the coating fabricated with the low CPSP could be explained because the improved resistance to fracture due to the presence of partially melted regions might compensate a deleterious effect of the hardness decrease.  相似文献   

3.
Perfluoroalkoxy (PFA) is a potential polymer coating material for low-temperature waste heat recovery in heat exchangers. Nonetheless, poor thermal conductivity, low strength and susceptibility to surface degradation by erosion/wear pose restrictions in its application. In this study, four types of fillers, namely graphite, silicon carbide, alumina and boron nitride, were introduced to enhance the thermal, mechanical and tribological properties in PFA coatings. The thermal diffusivity and specific heat capacity of the composites (reinforced with 20 wt.% filler) were also measured using laser flash and differential scanning calorimetry techniques, respectively. The results indicated that the addition of graphite or boron nitride increased the thermal conductivity of PFA by at least 2.8 orders of magnitude, while the composites with the same weight fraction of alumina or silicon carbide showed 20-80% rise in thermal conductivity. The micromechanical deformation and tribological behavior of composite coatings, electrostatically sprayed on steel substrates, were investigated by means of instrumented indentation and scratch tests. The deformation response and friction characteristics were investigated, and the failure mechanisms were identified. Surface hardness, roughness and structure of fillers influenced the sliding performance of the composite coatings. PFA coatings filled with Al2O3 or SiC particles showed high load-bearing capacity under sliding conditions. Conversely, BN- and graphite-filled PFA coatings exhibited lower interfacial adhesion to steel substrate and were prone to failure at relatively lower applied loads.  相似文献   

4.
Three Al2O3-13wt.% TiO2 powders, with the same chemical composition but different Al2O3-TiO2 distribution patterns, are plasma sprayed and the resulting coatings are compared in terms of their phase composition, microstructure, hardness, crack growth resistance, and abrasive wear performance. It is demonstrated that the degree of mixing of the Al2O3 and TiO2 ingredients in the feed powder has immense impact on the phase composition, microstructure, hardness, crack growth resistance, and abrasive wear performance of the coatings. A high degree of mixing of Al2O3 and TiO2 in the powder state results in more uniform microstructure, higher hardness, higher crack growth resistance, and consequently better abrasive wear resistance of the coating.  相似文献   

5.
Tribological tests were conducted on thermally sprayed silicon carbide (SiC) coatings to investigate its potential on reducing wear in offshore wind turbine bearings. The tests were carried out under dry conditions, 3.5 wt.% NaCl solution, and polyalfaolefin (PAO)-lubricated conditions. In order to obtain good quality SiC coatings, it is compulsory to modify the feedstock to limit SiC decomposition during atmospheric spraying process. The SiC feedstock used in this research has been modified with yttrium aluminum garnet (Y3Al5O12) oxide additives that originated from its metal salt precursors. High-frequency pulse detonation (HFPD) technique has been utilized to produce coatings of around 100 μm in thickness. The sliding tests have recorded the lowest coefficient of friction (COF) of 0.15 in PAO condition and the highest COF of 0.50 in dry sliding. The wear tracks morphology show that during dry sliding test, the coatings experience abrasive wear accompanied by tribo-oxidation reaction that initiates crack formation along the splat boundaries. On the other two sliding test conditions (NaCl and PAO), polishing of asperities and some grain plowing from the splats were observed in the wear tracks. Tribochemical wear was found to be the main mechanism producing smooth surfaces. Nevertheless, in all cases, the wear losses were negligible.  相似文献   

6.
Plasma generated by the SG-100 torch was applied to spray suspension formulated with the use of ZrO2 + 8 wt.% Y2O3 (8YSZ) and ZrO2 + 24 wt.% CeO2 + 2.5 wt.% Y2O3 (24CeYSZ) as solid phases. The suspensions were formulated with the use of 20 wt.% solid phase, 40 wt.% water, and 40 wt.% ethanol. The plasma spray parameters were optimized by keeping constant: (a) the electric power of 40 kW and (b) the working gas compositions of 45 slpm for Ar and 5 slpm for H2. On the other hand, the spray distance was varied from 40 to 60 mm and the torch linear speed was varied from 300 to 500 mm/s. The coatings were sprayed onto stainless steel substrates, and their thicknesses were in the range from 70 to 110 μm. The coating microstructures were analyzed with a scanning electron microscope. Mechanical properties were tested with the different methods including the indentation and scratch tests. The indentation test, carried out with various loads ranging from 100 to 10,000 mN, enabled to determine elastic modulus and Martens microhardness. Young’s modulus of the coatings was in the range of 71-107 GPa for 8YSZ and 68-130 GPa for 24CeYSZ coatings. The scratch test enabled the authors to find the scratch macrohardness.  相似文献   

7.
Cu and Cu-MoS2 coatings were fabricated by cold spray, and the fretting wear performance of the two coatings was compared. A mixture (95 wt.% Cu + 5 wt.% MoS2) was used as feedstock for the composite coating. Coatings were sprayed with identical gas flow conditions on the substrates pre-heated to approximately 170 °C. The morphology of coating top surface and polished cross sections was analyzed by scanning electron microscopy (SEM) and light optical microscopy (LOM). The influence of MoS2 on Cu deposition was examined. The local MoS2 concentration within the coating was found to affect the hardness. Fretting tests were carried out at two different normal loads, and the influence of MoS2 on friction and wear was studied. The morphology and elemental compositions of the wear scars and wear debris were observed by SEM and energy dispersive x-ray spectroscopy (EDS), respectively.  相似文献   

8.
6061Al powder with 15 wt.% SiC particulate (SiCp) reinforcement was mechanically alloyed (MA) in a high-energy attrition mill. The MA powder was then plasma sprayed onto weathering steel (Cor-Ten A242) substrate using an atmospheric plasma spray process. Results of particle size analysis and scanning electron microscopy show that the addition of SiC particles as the reinforcement influences on the matrix grain size and morphology. XRD studies revealed embedment of SiCp in the MA-processed composite powder, and nanocrystals in the MA powder and the coating. Microstructural studies showed a uniform distribution of reinforced SiC particles in the coating. The porosity level in the coating was as low as 2% while the coating hardness was increased to 232VHN. The adhesion strength of the coatings was high and this was attributed to higher degree of diffusion at the interface. The wear rate in the coatings was evaluated using a pin-on-disk type tribometer and found to decrease by 50% compared to the 6061Al matrix coating. The wear mechanism in the coating was delamination and oxidative type.  相似文献   

9.
Four types of NiCr-Cr2O3 composite coatings doped with different mass fraction of Nd2O3 were deposited by atmospheric plasma spraying. The microstructure and phase composition of as-sprayed coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). Furthermore, their friction and wear behaviors at 20 and 600 °C under unlubricated condition were evaluated using CSM high temperature tribometer. The results showed that Nd2O3 could refine microstructure of NiCr-Cr2O3 composite coating and make Cr2O3 distribution more uniform in the coating, which leads to the increase of average microhardness. In addition, NiCr-Cr2O3 composite coatings doped with Nd2O3 had better wear resistance than that without Nd2O3 at experimental temperatures. Especially, the coating containing 8 wt.% Nd2O3 showed the best wear resistance at 20 and 600 °C, which was attributed to the refined microstructure and improved microhardness. At 20 °C, the wear mechanism of the coating was abrasive wear, brittle fracture and splat detachment. At 600 °C, the wear mechanism was adhesion wear and plastic deformation.  相似文献   

10.
Ti(CN) coatings with graphite addition ranging from 0 to 50 wt.% were prepared using reactive plasma spraying technology and their microstructure, mechanical, and tribological properties were investigated using scanning and transmission electron microscopy, x-ray diffraction analysis, x-ray photoelectron spectroscopy, Vickers microhardness testing, and block-on-ring wear testing. The results showed that graphite addition resulted in crystallite size refinement and an increase in the amount of amorphous phase. The Ti(CN) coatings consisted of a mixture of Ti(CN), graphite, CN x , and amorphous phases. The hardness first increased then decreased as the graphite content was increased, with a maximum of 1450 HV0.2 for 30 wt.% graphite addition. The fracture toughness decreased from 4.38 MPa m1/2 to 2.76 MPa m1/2 with increasing graphite content. The friction coefficient decreased due to unreacted graphite embedded in the matrix. Also, the wear rate first decreased then increased, with a minimum value of 2.65 × 10?6 mm3 N?1 m?1 for 30 wt.% graphite addition. The wear mechanisms of the Ti(CN) coatings included abrasive, adhesive, and oxidation wear.  相似文献   

11.
Mechanical properties and wear rates of Al2O3-13 wt.% TiO2 (AT-13) and Al2O3-43 wt.% TiO2 (AT-43) coatings obtained by flame and atmospheric plasma spraying were studied. The feed stock was either ceramic cords or powders. Results show that the wear resistance of AT-13 coatings is higher than that of AT-43 and it seems that the effect of hardness on wear resistance is more important than that of toughness. Additionally, it was established that, according to conditions used to elaborate coatings and the sliding tribological test chosen, spray processes do not seem to have an important effect on the wear resistance of these coatings.  相似文献   

12.
The influence of micrometric alumina (low surface area-to-volume ratio) and nanometric alumina (high surface area-to-volume ratio) on microstructure, hardness and abrasive wear of a NiCrBSi hardfacing alloy coating applied to an AISI 304 substrate using flame spraying (FS) combined with surface flame melting (SFM) is studied. Remelting after spraying improved the mechanical and tribological properties of the coatings. Microstructural characterization using XRD, SEM and EDS indicated that alumina additions produced similar phases (NiSi, Ni3B, CrC and Ni31Si12) regardless of the alumina size, but the phases differed in morphology, size distribution and relative proportions from one coating to another. The addition of 12 wt.% nanometric Al2O3 increased the phases concentration more than five- to sixfold and reduced the hard phases size about four-to threefold compared with NiCrBSi + 12 wt.% micrometric Al2O3. Nanoalumina led to reduced mass loss during abrasive wear compared to micrometric alumina and greater improvement in hardness.  相似文献   

13.
Al2O3-20 wt.% TiO2 ceramic coatings were deposited on the surface of Grade D steel by plasma spraying of commercially available powders. The phases and the microstructures of the coatings were investigated by x-ray diffraction and scanning electron microscopy, respectively. The Al2O3-20 wt.% TiO2 composite coating exhibited a typical inter-lamellar structure consisting of the γ-Al2O3 and the Al2TiO5 phases. The dry sliding wear behavior of the coating was examined at 20 °C using a ball-on-disk wear tester. The plasma-sprayed coating showed a low wear rate (~4.5 × 10?6 mm3 N?1 m?1), which was <2% of that of the matrix (~283.3 × 10?6 mm3 N?1 m?1), under a load of 15 N. In addition, the tribological behavior of the plasma-sprayed coating was analyzed by examining the microstructure after the wear tests. It was found that delamination of the Al2TiO5 phase was the main cause of the wear during the sliding wear tests. A suitable model was used to simulate the wear mechanism of the coating.  相似文献   

14.
Rare-earth zirconates have been the focus of advanced thermal barrier coating research for nearly two decades; however, their lack of toughness prevents a wide-scale adoption due to lack of erosion and thermal cyclic durability. There are generally two methods of improving toughness: intrinsic modification of the coating chemistry and extrinsic modification of the coating structure. This study compares the efficacy of these two methods for a similar overall rare-earth content via the air plasma spray process. The extrinsically toughened coatings were comprised of a two-phase composite containing 30 wt.% Gd2Zr2O7 (GZO) combined with 70 wt.% of a tougher t′ low-k material (ZrO2-2Y2O3-1Gd2O3-1Yb2O3; mol.%), while a single-phase fluorite with the overall rare-earth content equivalent to the two-phase composite (13 mol.% rare-earth) was utilized to explore intrinsically toughened concept. The coatings were then characterized via x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy, and their performance was evaluated via erosion, thermal conductivity, thermal annealing (500 h), and thermal cycling. It was shown that the extrinsic method provided an improved erosion and thermal conductivity response over the single phase, but at the expense of high-temperature stability and cyclic life.  相似文献   

15.
Alumina, Al2O3 + 3 to 40 wt% TiO2, and Al2O3 + 40 wt% ZrO2 coatings were deposited by atmospheric plasma spraying (APS) and detonation gun spraying (DGS). The coatings were evaluated by optical microscopy, microhardness measurements, and X- ray diffraction. Wear resistance of the coatings was evaluated by rubber wheel sand abrasion and particle erosion test methods. Detonation gun- sprayed coatings exhibited more homogeneous microstructures and somewhat higher microhardness than corresponding plasma- sprayed coatings. Small additions of TiO2 (3 wt%) improved both the abrasion and erosion wear resistance, whereas 40 wt% TiO2 significantly decreased the erosion wear resistance of both APS and DGS coatings. Alumina + 40% ZrO2 coatings exhibited the best abrasion wear resistance of both APS and DGS coatings, but the erosion wear resistance of these coatings was lower than that of the Al2O3 and Al2O3 + 3 wt% TiO2 coatings. The best abrasion wear resistance of the coatings studied was obtained with DGS Al2O3 + 40 wt% ZrO2 and Al2O3 + 3 to 40 wt% TiCh coatings. These coatings exhibited lower wear rates than bulk Al2O3. The best erosion wear resistance was obtained with the DGS Al2O3 + 3 wt% TiO2 coating; however, it exhibited a higher wear rate than bulk Al2O3. In general, detonation gun- sprayed coatings showed significantly enhanced abrasion and erosion wear resistance than the corresponding plasma- sprayed coatings.  相似文献   

16.
The composite coatings containing HBN were prepared on 2024 aluminum alloy by microarc oxidation in the electrolyte with nano-HBN particles. The microstructure, surface roughness, phase composition, hardness, adhesion strength and wear resistance of composite coatings were analyzed by SEM, EDS, laser confocal microscope, XRD, Vickers hardness tester, scratch test and ball-on-disc abrasive tests. The results revealed that composite coatings were mainly composed of γ-Al2O3, α-Al2O3, mullite and HBN. With increasing the content of HBN particles in the electrolyte, the size and number of the pores on the surface of composite coatings decreased significantly. Compared to the MAO coatings without HBN, the composite coatings exhibited better wear resistance, as demonstrated by the lower friction coefficient and the lower wear rate.  相似文献   

17.
Low-power plasma-sprayed FeCrAl/Al2O3 composite coatings with 1.5 mm thickness have been fabricated for radar absorption applications. The effects of FeCrAl content on the coating properties were studied. The FeCrAl presents in the form of a few thin lamellae and numerous particles, demonstrating relatively even distribution in all the coatings. Results show that the micro-hardness and porosity decrease with the increase in FeCrAl content. With FeCrAl content increasing from 28 to 47 wt.%, the bonding strength of the coatings with 1.5 mm thickness increases from 10.5 to 27 MPa, and the failure modes are composed of cohesive and adhesive failure, which are ascribed to the coating microstructure and the residual stress, respectively.  相似文献   

18.
Air plasma-sprayed conventional alumina-titania (Al2O3-13wt.%TiO2) coatings have been used for many years in the thermal spray industry for antiwear applications, mainly in the paper, printing, and textile industries. This work proposes an alternative to the traditional air plasma spraying of conventional aluminatitania by high-velocity oxyfuel (HVOF) spraying of nanostructured titania (TiO2). The microstructure, porosity, hardness (HV 300 g), crack propagation resistance, abrasion behavior (ASTM G65), and wear scar characteristics of these two types of coatings were analyzed and compared. The HVOF-sprayed nanostructured titania coating is nearly pore-free and exhibits higher wear resistance when compared with the air plasma-sprayed conventional alumina-titania coating. The nanozones in the nanostructured coating act as crack arresters, enhancing its toughness. By comparing the wear scar of both coatings (via SEM, stereoscope microscopy, and roughness measurements), it is observed that the wear scar of the HVOF-sprayed nanostructured titania is very smooth, indicating plastic deformation characteristics, whereas the wear scar of the air plasma-sprayed alumina-titania coating is very rough and fractured. This is considered to be an indication of a superior machinability of the nanostructured coating.  相似文献   

19.
The mechanical and tribological behavior and microstructural evolutions of the Ni(Al)-reinforced nanocomposite plasma spray coatings were studied. At first, the feedstock Ni(Al)-15 wt.% (Al2O3-13% TiO2) nanocomposite powders were prepared using low-energy mechanical milling of the pure Ni and Al powders as well as Al2O3-13% TiO2 nanoparticle mixtures. The characteristics of the powder particles and the prepared coatings depending on their microstructures were examined in detail. The results showed that the feedstock powders after milling contained only α-Ni solid solution with no trace of the intermetallic phase. However, under the air plasma spraying conditions, the NiAl intermetallic phase in the α-Ni solid solution matrix appeared. The lack of nickel aluminide formation during low-energy ball milling is beneficial hence, the exothermic reaction can occur between Ni and Al during plasma spraying, improving the adhesive strength of the nanocomposite coatings. The results also indicated that the microhardness of the α-Ni phase was 3.91 ± 0.23 GPa and the NiAl intermetallic phase had a mean microhardness of 5.69 ± 0.12 GPa. The high microhardness of the nanocomposite coatings must be due to the presence of the reinforcing nanoparticles. Due to the improvement in mechanical properties, the Ni(Al) nanocomposite coatings showed significant modifications in wear resistance with low frictional coefficient.  相似文献   

20.
Cold-gas dynamic spraying (“cold spraying”) was used to deposit aluminum-alumina (Al-Al2O3) metal-matrix composite (MMC) coatings onto 6061 Al alloy. The powders consisted of ?45 μm commercially pure Al that was admixed with either 10 μm or agglomerated 20 nm Al2O3 in weight fractions of 25, 50, 75, 90, and 95 wt.%. Scanning electron microscopy (SEM), Vickers microhardness testing, and image analysis were conducted to determine the microstructure, properties, and the volume fractions of reinforcing particles in the coatings, which was then converted to weight fractions. As the weight fraction of the Al2O3 in the coatings increased, the hardness values of the MMC coatings increased. A maximum hardness of 96 ± 10 HV0.2 was observed for the MMC coating that contained the agglomerated 20 nm Al2O3 particles, while a maximum hardness of 85 ± 24 HV0.2 was observed for the coatings with the 10 μm Al2O3 particles. The slight increase in hardness of the coating containing the agglomerated 20 nm Al2O3 particles occurred in a coating of Al2O3 content that was lower than that in the coating that contained the 10 μm reinforcing Al2O3 particles. The increased hardness of the MMC coatings that contained the agglomerated 20 nm Al2O3 particles and at lower reinforcing particle content was attributed to the increased spreading of the nanoagglomerated particles in the coating, which increased load-sharing and reinforcement capability of the particles. These results suggest that the use of nanoagglomerated, reinforcing hard-phase particles in cold-sprayed MMC coatings may be a more efficient alternative to the use of conventional micronsized reinforcing particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号