首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 3 毫秒
1.
《Drying Technology》2013,31(7):1479-1490
A simple method for determining concentration (water or solvent content) dependent diffusivity in liquid foods and polymer solutions from the regular regime drying curve was developed on the basis of the power-law diffusion model. The method was first tested to the drying data generated from numerical solutions of the diffusion equation with various types of concentration dependent diffusivities. The present method was found to be very simple yet accurate compared with the previous methods. Then, the drying rates of various sugar solutions experimentally obtained were analyzed on the basis of the present method to determine the moisture content dependent diffusivities.  相似文献   

2.
ABSTRACT

The Regular Regime analysis, introduced by Schoeber in 1976, enables the determination of concentration dependent diffusivities from a single desorption experiment. A study on theoretical and practical aspects of this analysis is presented here. The theoretical background of the method is treated. Efforts have been made to simplify the calculation procedures by compacting and clarifying some complicated relationships. The calculation has become simple, straightforward and easy to use in practice. A stepwise procedure is given.

The Regular Regime analysis has been applied to wood specimens (Norway spruce). The moisture diffusivities are compared with those obtained from a Stationary Flux method. The observed differences are discussed. Also attention is paid to some problems in the application of the Regular Regime analysis.  相似文献   

3.
N. Kechaou  M. Maâlej 《Drying Technology》2013,31(4-5):1109-1125
ABSTRACT

Experimental drying curves for Tunisia Deglet Nour dates were obtained in a laboratory dryer under different drying conditions The air temperature was varied from 30 to 69°C, relative humidity from 11.6 to 47.1 % and air velocity from 0.9 to 2.7 m/s. A numerical method to obtain a solution of a diffusion equation in which the diffusivity depends upon temperature and moisture content has been proposed to investigate the moisture movement in a date by assuming the sample to be a homogenous infinite cylinder. To rind the fitting moisture and temperature dependent diffusivity, the calculated drying curves are compared with the observed drying curves and an empirical equation for the moisture diffusivity of the date has presented as a function of temperature and moisture. It has been shown that the moisture distribution in the date during drying can be obtained by using the empirical equation presented.  相似文献   

4.
N. Kechaou  M. Ma  lej 《Drying Technology》2000,18(4):1109-1125
Experimental drying curves for Tunisia Deglet Nour dates were obtained in a laboratory dryer under different drying conditions The air temperature was varied from 30 to 69°C, relative humidity from 11.6 to 47.1 % and air velocity from 0.9 to 2.7 m/s. A numerical method to obtain a solution of a diffusion equation in which the diffusivity depends upon temperature and moisture content has been proposed to investigate the moisture movement in a date by assuming the sample to be a homogenous infinite cylinder. To rind the fitting moisture and temperature dependent diffusivity, the calculated drying curves are compared with the observed drying curves and an empirical equation for the moisture diffusivity of the date has presented as a function of temperature and moisture. It has been shown that the moisture distribution in the date during drying can be obtained by using the empirical equation presented.  相似文献   

5.
Single-layer solar drying experiments were conducted for Mexican tea leaves (Chenopodium ambrosioides) grown in Marrakech. An indirect forced convection solar dryer was used in drying the Mexican tea leaves at different conditions such as ambient air temperature (21° to 35°C), drying air temperature (45° to 60°C) with relative humidity (29 to 53%), airflow rate (0.0277 to 0.0556 m 3/s), and solar radiation (150–920 W/m2). The experimental drying curves showed only a falling rate period. In order to select the suitable form of drying curves, 14 mathematical models were applied to the experimental data and compared according to their statistical parameters. The main factor in controlling the drying rate was found to be the temperature. The drying rate equation was determined empirically from the characteristic drying curve. The diffusion coefficient of the Chenopodium ambrosioides leaves was estimated and varied between 1.0209 × 10?9 and 1.0440 × 10?8 m 2·s?1.The activation energy was found to be 89.1486 kJ·mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号