首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gelatinous drop-like corneal dystrophy (GDLD) is a rare autosomal recessive disorder characterized clinically by grayish corneal deposits of amyloid and by severely impaired visual acuity. Most patients require corneal transplantation. To localize a gene responsible for GDLD, we performed linkage analysis of 10 consanguineous Japanese families with a total of 13 affected members. Homozygosity mapping provided a maximum LOD score of 9.80 at the D1S2741 marker locus on the short arm of chromosome 1. Haplotype analysis further defined the disease locus within a region of approximately 2.6 cM between D1S2890 and D1S2801.  相似文献   

2.
Hereditary or primary lymphedema is a developmental disorder of the lymphatic system which leads to a disabling and disfiguring swelling of the extremities. Hereditary lymphedema generally shows an autosomal dominant pattern of inheritance with reduced penetrance, variable expression and variable age at onset. Three multigeneration families demonstrating the phenotype of hereditary lymphedema segregating as an autosomal dominant trait with incomplete penetrance were genotyped for 366 autosomal markers. Linkage analysis yielded a two-point LOD score of 6.1 at straight theta = 0. 0 for marker D5S1354 and a maximum multipoint LOD score of 8.8 at marker D5S1354 located at chromosome 5q34-q35. Linkage analysis in two additional families using markers from the linked region showed one family consistent for linkage to distal chromosome 5. In the second family, linkage to 5q was excluded for all markers in the region with LOD scores Z < -2.0. The vascular endothelial growth factor C receptor ( FLT4 ) was mapped to the linked region, and partial sequence analysis identified a G-->A transition at nucleotide position 3360 of the FLT4 cDNA, predicting a leucine for proline substitution at residue 1126 of the mature receptor in one nuclear family. This study localizes a gene for primary lymphedema to distal chromosome 5q, identifies a plausible candidate gene in the linked region, and provides evidence for a second, unlinked locus for primary lymphedema.  相似文献   

3.
Wolfram syndrome (DIDMOAD syndrome; MIM 222300) is an autosomal recessive neurodegenerative disorder characterized by juvenile-onset diabetes mellitus and bilateral optic atrophy. Previous linkage analysis of multiply affected families indicated that the gene for Wolfram syndrome is on chromosome 4p, and it produced no evidence for locus heterogeneity. We have investigated 12 U.K. families with Wolfram syndrome, and we report confirmation of linkage to chromosome 4p, with a maximum two-point LOD score of 4.6 with DRD5, assuming homogeneity, and of 5.1, assuming heterogeneity. Overlapping multipoint analysis using six markers at a time produced definite evidence for locus heterogeneity: the maximum multipoint LOD score under homogeneity was <2, whereas when heterogeneity was allowed for an admixture a LOD of 6.2 was obtained in the interval between D4S432 and D4S431, with the peak close to the marker D4S3023. One family with an atypical phenotype was definitely unlinked to the region. Haplotype inspection of the remaining 11 families, which appear linked to chromosome 4p and had typical phenotypes, revealed crossover events during meiosis, which also placed the gene in the interval D4S432 and D4S431. In these families no recombinants were detected with the marker D4S3023, which maps within the same interval.  相似文献   

4.
The syndrome of hypoparathyroidism associated with growth retardation, developmental delay, and dysmorphism (HRD) is a newly described, autosomal recessive, congenital disorder with severe, often fatal consequences. Since the syndrome is very rare, with all parents of affected individuals being consanguineous, it is presumed to be caused by homozygous inheritance of a single recessive mutation from a common ancestor. To localize the HRD gene, we performed a genomewide screen using DNA pooling and homozygosity mapping for apparently unlinked kindreds. Analysis of a panel of 359 highly polymorphic markers revealed linkage to D1S235. The maximum LOD score obtained was 4.11 at a recombination fraction of 0. Analysis of three additional markers-GGAA6F06, D1S2678, and D1S179-in a 2-cM interval around D1S235 resulted in LOD scores >3. Analysis of additional chromosome 1 markers revealed evidence of genetic linkage disequilibrium and place the HRD locus within an approximately 1-cM interval defined by D1S1540 and D1S2678 on chromosome 1q42-43.  相似文献   

5.
Muscle-eye-brain disease (MEB) is an autosomal recessive disease of unknown etiology characterized by severe mental retardation, ocular abnormalities, congenital muscular dystrophy, and a polymicrogyria-pachygyria-type neuronal migration disorder of the brain. A similar combination of muscle and brain involvement is also seen in Walker-Warburg syndrome (WWS) and Fukuyama congenital muscular dystrophy (FCMD). Whereas the gene underlying FCMD has been mapped and cloned, the genetic location of the WWS gene is still unknown. Here we report the assignment of the MEB gene to chromosome 1p32-p34 by linkage analysis and homozygosity mapping in eight families with 12 affected individuals. After a genomewide search for linkage in four affected sib pairs had pinpointed the assignment to 1p, the MEB locus was more precisely assigned to a 9-cM interval flanked by markers D1S200 proximally and D1S211 distally. Multipoint linkage analysis gave a maximum LOD score of 6.17 at locus D1S2677. These findings provide a starting point for the positional cloning of the disease gene, which may play an important role in muscle function and brain development. It also provides an opportunity to test other congenital muscular dystrophy phenotypes, in particular WWS, for linkage to the same locus.  相似文献   

6.
Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of disorders characterized by insidiously progressive spastic weakness in the legs. Genetic loci for autosomal dominant HSP exist on chromosomes 2p, 14q, and 15q. These loci are excluded in 45% of autosomal dominant HSP kindreds, indicating the presence of additional loci for autosomal dominant HSP. We analyzed a Caucasian kindred with autosomal dominant HSP and identified tight linkage between the disorder and microsatellite markers on chromosome 8q (maximum two-point LOD score 5.51 at recombination fraction 0). Our results clearly establish the existence of a locus for autosomal dominant HSP on chromosome 8q23-24. Currently this locus spans 6.2 cM between D8S1804 and D8S1774 and includes several potential candidate genes. Identifying this novel HSP locus on chromosome 8q23-24 will facilitate discovery of this HSP gene, improve genetic counseling for families with linkage to this locus, and extend our ability to correlate clinical features with different HSP loci.  相似文献   

7.
Autosomal recessive nonsyndromic hearing loss (ARNSHL) is the most common form of hereditary hearing impairment (HHI). To date, 16 different loci have been reported, making ARNSHL an extremely heterogeneous disorder. One of these loci, DFNB4, was mapped to a 5-cM interval of 7q31 in a large Middle-Eastern Druze family. This interval also includes the gene for Pendred syndrome. We report on three new families with HHI from the Madras region of southern India that demonstrate linkage to 7q. Their pedigrees are compatible with autosomal recessive inheritance. Furthermore, the largest family identifies a novel locus (DFNB17) telomeric to the DFNB4 and Pendred intervals. A 3-cM region of homozygosity by descent between markers D7S486 and D7S2529 is present in all affected individuals in this family and generates a multipoint LOD score of 4.24. The two other families map to the previously reported DFNB4 region but have insufficient power to attain significant LOD scores. However, mutations in the Pendred syndrome gene are present in one of these families.  相似文献   

8.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) syndrome is a rare, multisystem disorder characterized clinically by ptosis, progressive external ophthalmoplegia, gastrointestinal dysmotility, leukoencephalopathy, thin body habitus, and myopathy. Laboratory studies reveal defects of oxidative-phosphorylation and multiple mtDNA deletions frequently in skeletal muscle. We studied four ethnically distinct families affected with this apparently autosomal recessive disorder. Probands from each family were shown, by Southern blot, to have multiple mtDNA deletions in skeletal muscle. We mapped the MNGIE locus to 22q13.32-qter, distal to D22S1161, with a maximum two-point LOD score of 6.80 at locus D22S526. Cosegregation of MNGIE with a single chromosomal region in families with diverse ethnic backgrounds suggests that we have mapped an important locus for this disorder. We found no evidence to implicate three candidate genes in this region, by using direct sequence analysis for DNA helicase II and by assaying enzyme activities for arylsulfatase A and carnitine palmitoyltransferase.  相似文献   

9.
Childhood absence epilepsy (CAE), a common form of idiopathic generalized epilepsy, accounts for 5%-15% of childhood epilepsies. To map the chromosomal locus of persisting CAE, we studied the clinical and electroencephalographic traits of 78 members of a five-generation family from Bombay, India. The model-free affected-pedigree member method was used during initial screening with chromosome 6p, 8q, and 1p microsatellites, and only individuals with absence seizures and/or electroencephalogram 3-4-Hz spike- and multispike-slow wave complexes were considered to be affected. Significant P values of .00000-.02 for several markers on 8q were obtained. Two-point linkage analysis, assuming autosomal dominant inheritance with 50% penetrance, yielded a maximum LOD score (Zmax) of 3.6 for D8S502. No other locus in the genome achieved a significant Zmax. For five smaller multiplex families, summed Zmax was 2.4 for D8S537 and 1.7 for D8S1761. Haplotypes composed of the same 8q24 microsatellites segregated with affected members of the large family from India and with all five smaller families. Recombinations positioned the CAE gene in a 3.2-cM interval.  相似文献   

10.
Dentin dysplasia, type II (MIM*125420) is an autosomal dominant disorder of dentin development. Clinically the primary dentition appears opalescent, and radiographically the pulp chambers are obliterated, resembling dentinogenesis imperfecta. However, unlike dentinogenesis imperfecta, the permanent teeth in dentin dysplasia, type II are normal in color and, on radiographs, have a thistle-tube pulp chamber configuration with pulp stones. The similarity of the primary dentition phenotype suggested that the gene for dentin dysplasia, type II is allelic with the gene for dentinogenesis imperfecta, Shields type II (DGII; MIM*125490), which has been localized to chromosome 4q13-q21. Twenty-four members of a three generation family in which ten members are affected with dentin dysplasia, type II were genotyped for microsatellite alleles specific for the area of chromosome 4q linked to DGII. Linkage was assessed by using the LINKAGE computer program, assuming autosomal dominant inheritance, a disease allele frequency of 0.0001, and complete penetrance. The maximum two-point LOD score (Zmax = 4.2 at theta = 0.0) was obtained with SPPI and D4S2691. Multipoint analysis gave a maximum LOD score of 4.33. The candidate region for dentin dysplasia, type II is approximately 14.1 cM, includes SPPI, D4S2691, D4S2690, D4S451, and D4S2456, and overlaps the most likely location of the DGII locus. A candidate gene for DGII should also be considered a candidate gene for dentin dysplasia, type II.  相似文献   

11.
Complete or partial congenital absence of hair (congenital alopecia) may occur either in isolation or with associated defects. The majority of families with isolated congenital alopecia has been reported to follow an autosomal-recessive mode of inheritance (MIM 203655). As yet, no gene has been linked to isolated congenital alopecia, nor has linkage been established to a specific region of the genome. In an attempt to map the gene for the autosomal recessive form of the disorder, we have performed genetic linkage analysis on a large inbred Pakistani family in which affected persons show complete absence of hair development (universal congenital alopecia). We have analyzed individuals of this family, using >175 microsatellite polymorphic markers of the human genome. A maximum LOD score of 7.90 at a recombination fraction of 0 has been obtained with locus D8S258. Haplotype analysis of recombination events localized the disease to a 15-cM region between marker loci D8S261 and D8S1771. We have thus mapped the gene for this hereditary form of isolated congenital alopecia to a locus on chromosome 8p21-22 (ALUNC [alopecia universalis congenitalis]). This will aid future identification of the responsible gene, which will be extremely useful for the understanding of the biochemistry of hair development.  相似文献   

12.
Distal myopathy with rimmed vacuoles is an autosomal recessive muscular disorder, characterized clinically by weakness of the distal muscles in the lower limbs in early adulthood. Recently, the gene locus for familial vacuolar myopathy with autosomal recessive inheritance (hereditary inclusion body myopathy) was mapped to chromosome 9 by genome-wide linkage analysis of nine Persian-Jewish families. Since both disease conditions share similar clinical, genetic, and histopathological features, we analyzed seven families with distal myopathy with rimmed vacuoles using ten microsatellite markers within the region of the hereditary inclusion body myopathy locus. Significantly high cumulative pairwise lod scores were obtained with three markers: D9S248 (Z(max) = 5.90 at theta = 0), D9S43 (Z(max) = 5.25 at theta = 0), and D9S50 (Z(max) = 4.23 at theta = 0). Detection of obligate recombination events as well as multipoint linkage analysis revealed that the most likely location of the distal myopathy with rimmed vacuoles gene is in a 23.3-cM interval defined by D9S319 and D9S276 on chromosome 9. The results raise the possibility that distal myopathy with rimmed vacuoles and hereditary inclusion body myopathy in Persian Jews are allelic diseases.  相似文献   

13.
We report the identification of a new locus for autosomal dominant limb-girdle muscular dystrophy (LGMD1) on 7q. Two of five families (1047 and 1701) demonstrate evidence in favor of linkage to this region. The maximum two-point LOD score for family 1047 was 3.76 for D7S427, and that for family 1701 was 2.63 for D7S3058. Flanking markers place the LGMD1 locus between D7S2423 and D7S427, with multipoint analysis slightly favoring the 9-cM interval spanned by D7S2546 and D7S2423. Three of five families appear to be unlinked to this new locus on chromosome 7, thus establishing further heterogeneity within the LGMD1 diagnostic classification.  相似文献   

14.
Peutz-Jeghers syndrome (PJS) is an autosomal dominant disease with variable expression and incomplete penetrance, characterized by mucocutaneous pigmentation and hamartomatous polyposis. Patients with PJS have increased frequency of gastrointestinal and extraintestinal malignancies (ovaries, testes, and breast). In order to map the locus (or loci) associated with PJS, we performed a genomewide linkage analysis, using DNA polymorphisms in six families (two from Spain, two from India, one from the United States, and one from Portugal) comprising a total of 93 individuals, including 39 affected and 48 unaffected individuals and 6 individuals with unknown status. During this study, localization of a PJS gene to 19p13.3 (around marker D19S886) had been reported elsewhere. For our families, marker D19S886 yielded a maximum LOD score of 4.74 at a recombination fraction (theta) of .045; multipoint linkage analysis resulted in a LOD score of 7.51 for the interval between D19S886 and 19 pter. However, markers on 19q13.4 also showed significant evidence for linkage. For example, D19S880 resulted in a maximum LOD score of 3.8 at theta = .13. Most of this positive linkage was contributed by a single family, PJS07. These results confirm the mapping of a common PJS locus on 19p13.3 but also suggest the existence, in a minority of families, of a potential second PJS locus, on 19q13.4. Positional cloning and characterization of the PJS mutations will clarify the genetics of the syndrome and the implication of the gene(s) in the predisposition to neoplasias.  相似文献   

15.
Myopia, or nearsightedness, is the most common eye disorder worldwide. "Pathologic" high myopia, or myopia of <=-6.00 diopters, predisposes individuals to retinal detachment, macular degeneration, cataract, or glaucoma. A locus for autosomal dominant pathologic high myopia has been mapped to 18p11.31. We now report significant linkage of high myopia to a second locus at the 12q21-23 region in a large German/Italian family. The family had no clinical evidence of connective-tissue abnormalities or glaucoma. The average age at diagnosis of myopia was 5.9 years. The average spherical-component refractive error for the affected individuals was -9.47 diopters. Markers flanking or intragenic to the genes for the 18p locus, Stickler syndromes type I and II (12q13.1-q13.3 and 6p21.3), Marfan syndrome (15q21.1), and juvenile glaucoma (chromosome 1q21-q31) showed no linkage to the myopia in this family. The maximum LOD score with two-point linkage analysis in this pedigree was 3.85 at a recombination fraction of .0010, for markers D12S1706 and D12S327. Recombination events identified markers D12S1684 and D12S1605 as flanking markers that define a 30.1-cM interval on chromosome 12q21-23, for the second myopia gene. These results confirm genetic heterogeneity of myopia. The identification of this gene may provide insight into the pathophysiology of myopia and eye development.  相似文献   

16.
17.
The extraocular fibrosis syndromes are congenital ocular-motility disorders that arise from dysfunction of the oculomotor, trochlear, and abducens nerves and/or the muscles that they innervate. Each is marked by a specific form of restrictive paralytic ophthalmoplegia with or without ptosis. Individuals with the classic form of congenital fibrosis of the extraocular muscles (CFEOM1) are born with bilateral ptosis and a restrictive infraductive external ophthalmoplegia. We previously demonstrated that CFEOM1 is caused by an autosomal dominant locus on chromosome 12 and results from a developmental absence of the superior division of the oculomotor nerve. We now have mapped a variant of CFEOM, exotropic strabismus fixus ("CFEOM2"). Affected individuals are born with bilateral ptosis and restrictive ophthalmoplegia with the globes "frozen" in extreme abduction. This autosomal recessive disorder is present in members of three consanguineous Saudi Arabian families. Genetic analysis of 70 individuals (20 affected individuals) reveals linkage to markers on chromosome 11q13, with a combined LOD score of 12.3 at the single nonrecombinant marker, D11S1314. The 2.5-cM CFEOM2 critical region is flanked by D11S4196/D11S4162 and D11S4184/1369. Two of the three families share a common disease-associated haplotype, suggesting a founder effect for CFEOM2. We hypothesize that CFEOM2 results from an analogous developmental defect to CFEOM1, one that affects both the superior and inferior divisions of the oculomotor nerve and their corresponding alpha motoneurons and extraocular muscles.  相似文献   

18.
Fetal hemoglobin (Hb F) and fetal cell (FC) levels in adults show considerable variation and are influenced by several genetic variants; the major determinants appear to be unlinked to the beta-globin gene cluster. Recently, a trans-acting locus controlling Hb F and FC production has been mapped to chromosome 6q23 in an Asian Indian kindred that includes individuals with heterocellular hereditary persistence of Hb F (HPFH) associated with beta thalassemia. We have extended the kindred by 57 members, bringing the total studied to 210, and have saturated the region with 26 additional markers. Linkage analysis showed tight linkage of the quantitative-trait locus (QTL) to the anonymous markers D6S976 (LOD score 11.3; recombination fraction .00) and D6S270 (LOD score 7.4; recombination fraction .00). Key recombination events now place this QTL within a 1-2-cM interval spanning approximately 1.5 Mb between D6S270 and D6S1626. Furthermore, haplotype analysis has led to a reevaluation of the genealogy and to the identification of additional relationships in the kindred.  相似文献   

19.
Reading disability (RD), or dyslexia, is a complex cognitive disorder manifested by difficulties in learning to read, in otherwise normal individuals. Individuals with RD manifest deficits in several reading and language skills. Previous research has suggested the existence of a quantitative-trait locus (QTL) for RD on the short arm of chromosome 6. In the present study, RD subjects' performance in several measures of word recognition and component skills of orthographic coding, phonological decoding, and phoneme awareness were individually subjected to QTL analysis, with a new sample of 126 sib pairs, by means of a multipoint mapping method and eight informative DNA markers on chromosome 6 (D6S461, D6S276, D6S105, D6S306, D6S258, D6S439, D6S291, and D6S1019). The results indicate significant linkage across a distance of at least 5 cM for deficits in orthographic (LOD = 3.10) and phonological (LOD = 2.42) skills, confirming previous findings.  相似文献   

20.
Familial eosinophilia (FE) is an autosomal dominant disorder characterized by peripheral hypereosinophilia of unidentifiable cause with or without other organ involvement. To localize the gene for FE, we performed a genomewide search in a large U.S. kindred, using 312 different polymorphic markers. Seventeen affected subjects, 28 unaffected bloodline relatives, and 8 spouses were genotyped. The initial linkage results from the genome scan provided evidence for linkage on chromosome 5q31-q33. Additional genotyping of genetic markers located in this specific region demonstrated significant evidence that the FE locus is situated between the chromosome 5q markers D5S642 and D5S816 (multipoint LOD score of 6.49). Notably, this region contains the cytokine gene cluster, which includes three genes-namely, those for interleukin (IL)-3, IL-5, and granulocyte/macrophage colony-stimulating factor (GM-CSF)-whose products play important roles in the development and proliferation of eosinophils. These three cytokine genes were screened for potential disease-specific mutations by resequencing of a subgroup of individuals from the present kindred. No functional sequence polymorphisms were found within the promoter, the exons, or the introns of any of these genes or within the IL-3/GM-CSF enhancer, suggesting that the primary defect in FE is not caused by a mutation in any one of these genes but, rather, is caused by another gene in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号