首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When using an optical non-contact scanning system to measure an object that has a large surface, large curvature, or a full 360° profile, one can acquire only one set of sectional measurement points each time. For reconstructing the entire object, every set of sectional measurement points acquired at different positions must match. Therefore, the optimal shape error analysis for the matching image of two or more sets of sectional measurement points is desired. This paper presents a measurement system that combines two CCD cameras, one line laser and a three-axis motion stage. It forms an optical non-contact scanning system in association with the mathematical method of direct shape error analysis for the use in reverse engineering. This analysis and measurement system can be used for the profile measurements of free-form objects. It analyzes the matching image of a free-form surface with high efficiency and accuracy. The validity and applicability of this system are demonstrated by two practical examples.  相似文献   

2.
Surveying of coastal structures is necessary to ensure that the structures are in good operating condition. Mobile lidar systems could be installed on vessels to monitor the coastal structures, even if there is no previous metrological information about their reliability. The aim of this work is to perform the metrological verification of the mentioned survey instruments. The verification methodology is based on the comparison of mobile lidar data from a breakwater with ground truth data provided by a Riegl LMS Z390i terrestrial lidar. Mobile lidar data are obtained from an Optech Lynx system installed on a vessel. The results show errors lower than 0.09 m based on distance measurements. Universal Transverse Mercator (UTM) coordinates show absolute errors lower than 0.12 m in the horizontal plane and 0.18 m in height. Precision analysis from the mobile lidar shows error values up to 0.055 m, while the terrestrial lidar gives 0.018 m for the same region of interest. The spatial resolution from the mobile lidar gives values of 321 points m?2, in comparison with the 22,013 points m?2 from the terrestrial lidar. Two point clouds from the same region of the breakwaters, obtained using the mobile and the terrestrial lidar, were triangulated and rasterized. The standard deviation of the vertical distances between the nodes of the raster data shows a value of 0.064 m. The results obtained show the potential of mobile lidar systems in combination with vessels for the monitoring of certain coastal structures, such as breakwaters, sea walls, bridges, wharves, and jetties.  相似文献   

3.
In multisensor coordinate metrology scenarios involving the fusion of homogenous data, specifically 3D point clouds like those originated by CMMs and structured light scanners, the problem of registration, i.e. the proper localization of the clouds in the same coordinate system, is of central importance. For fine registration, known variants of the Iterative Closest Point (ICP) algorithm are commonly adopted; however, no attempt seems to be done to tweak such algorithms to better suit the distinctive multisensor nature of the data. This work investigates an original approach that targets issues which are specific to multisensor coordinate metrology scenarios, such as coexistence of point sets with different densities, different spatial arrangements (e.g. sparse CMM points vs. gridded sets from light scanners), and different noise levels associated to the point sets depending on the metrological performances of the sensors involved. The proposed approach is based on combining known ICP variants with novel point set augmentation techniques, where new points are added to existing sets with the purpose of improving registration performance and robustness to measurement error. In particular, augmentation techniques based on advanced fitting solutions promote a paradigm shift for registration, which is not seen as a geometric problem consisting in moving point sets as close as possible to each other, but as a problem where it is not the original points, but the underlying geometries that must be brought together. In this work, promising combinations of ICP and point augmentation techniques are investigated through the application to virtual scenarios involving synthetic geometries and simulated measurements. Guidelines for approaching registration problems in industrial scenarios involving multisensor data fusion are also provided.  相似文献   

4.
Three-dimensional (3D) spatial information of object points is a vital requirement for many disciplines. Laser scanning technology and techniques based on image matching have been used extensively to produce 3D dense point clouds. These data are used frequently in various applications, such as the generation of digital surface model (DSM)/digital terrain model (DTM), extracting objects (e.g., buildings, trees, and roads), 3D modelling, and detecting changes. The aim of this study was to extract the building roof points automatically from the 3D point cloud data created via the image matching techniques with optical aerial images (with red, green, and blue band (RGB) and infrared (IR)). In the first stage of the study, as an alternative to laser scanning technology, which is more expensive than optical imaging systems, the 3D point clouds were produced by matching high-resolution images using a Semi Global Matching algorithm. The normalized difference vegetation index (NDVI) values for each point were calculated using the spectral information (RGB + IR) in the 3D point cloud data, and the points that represented the vegetation cover were determined using these values. In the second stage, existing ground and non-ground points that were free of vegetation cover were determined within the point cloud. Subsequently, only the points on the roof of the building were detected automatically using the proposed algorithm. Thus, points of the roofs of buildings located in areas with different topographic characteristics were detected automatically detected using only images. It was determined that the average values of correctness (Corr), completeness (Comp), and quality (Q) of the pixel-based accuracy analysis metrics were 95%, 98%, and 93%, respectively, in the selected test areas. According to the results of the accuracy analysis, it is clear that the proposed algorithm is very successful in automatic extraction of building roof points.  相似文献   

5.
Automated visual assessment of plant condition, specifically foliage wilting, reflectance and growth parameters, using machine vision has potential use as input for real-time variable-rate irrigation and fertigation systems in precision agriculture. This paper reviews the research literature for both outdoor and indoor applications of machine vision of plants, which reveals that different environments necessitate varying levels of complexity in both apparatus and nature of plant measurement which can be achieved. Deployment of systems to the field environment in precision agriculture applications presents the challenge of overcoming image variation caused by the diurnal and seasonal variation of sunlight. From the literature reviewed, it is argued that augmenting a monocular RGB vision system with additional sensing techniques potentially reduces image analysis complexity while enhancing system robustness to environmental variables. Therefore, machine vision systems with a foundation in optical and lighting design may potentially expedite the transition from laboratory and research prototype to robust field tool.  相似文献   

6.
点云作为一种重要的3维数据,能够直观地模拟生物器官、组织等的3维结构,基于医学点云数据的分类、分割、配准、目标检测等任务可以辅助医生进行更为准确的诊断和治疗,在临床医学以及个性化医疗器械辅助设计与3D打印有着重要的应用价值。随着深度学习的发展,越来越多的点云算法逐步由传统算法扩展到深度学习算法中。本文对点云算法在医学领域的研究及其应用进行综述,旨在总结目前用于医学领域的点云方法,包括医学点云的特点、获取途径以及数据转换方法;医学点云分割中的传统算法和深度学习算法;以及医学点云的配准任务定义、意义,以及基于有/无特征的配准方法。总结了医学点云在临床应用中仍存在的限制和挑战:1)医学图像重建的人体器官点云分布稀疏且包含噪音、误差;2)医学点云数据集标注困难、制作成本高,可用于训练深度学习模型的公开数据集非常稀少;3)前沿的点云处理算法大都基于自然场景点云数据集训练,这些算法在医学点云处理中的鲁棒性和泛化能力还有待验证。随着医学点云数据集质量和数量的提升,医学点云处理算法的研究将会吸引更多的研究者。  相似文献   

7.
A new sense for depth of field   总被引:19,自引:0,他引:19  
This paper examines a novel source of depth information: focal gradients resulting from the limited depth of field inherent in most optical systems. Previously, autofocus schemes have used depth of field to measured depth by searching for the lens setting that gives the best focus, repeating this search separately for each image point. This search is unnecessary, for there is a smooth gradient of focus as a function of depth. By measuring the amount of defocus, therefore, we can estimate depth simultaneously at all points, using only one or two images. It is proved that this source of information can be used to make reliable depth maps of useful accuracy with relatively minimal computation. Experiments with realistic imagery show that measurement of these optical gradients can provide depth information roughly comparable to stereo disparity or motion parallax, while avoiding image-to-image matching problems.  相似文献   

8.
在光学非接触三维测量中,复杂对象的重构需要多组测量数据的配准。最近点迭代(ICP)算法是三维激光扫描数据处理中点云数据配准的一种经典的数学方法,为了获得更好的配准结果,在ICP算法的基础之上,提出了结合基于特征点的等曲率预配准方法和邻近搜索ICP改进算法的精细配准,自动进行点云数据配准的算法,经对牙齿点云模型实验发现,点云数据量越大,算法的配准速度优势越明显,采用ICP算法的运行时间(194.58 s)远大于本算法的运行时间(89.13 s)。应用实例表明:该算法具有速度快、精度高的特点,算法效果良好。  相似文献   

9.
针对船舶外板开展数字化检测技术研究对提升船舶外板智能制造水平具有重要意义。为解决船舶外板检测参考点坐标获取问题,提出了一种识别三维标志点的方法,可在船舶外板数字化检测过程中为实测点云和模型点云的匹配提供参考坐标信息。该方法针对船舶外板结构特点和形面测量需求,设计三维标志点的几何结构。此外,结合三维标志点自身多种特征和周边结构差异化特征,将标志点多种尺度信息进行融合,实现对标志点的精准识别。最后通过标志点测量数据计算对应船舶外板上定位点的三维坐标。通过试验验证了在所提出的方法在三维标志点识别方面具有准确性高、定位精准的优点,将大幅提升船舶外板数字化检测的效率。  相似文献   

10.
Mobile laser scanning (MLS) systems equipped with precise Global Navigation Satellite System (GNSS) and inertial measurement unit (IMU) positioning devices are being used at an increasing rate for production of the high-accurate driving maps because of its safety and high performance in collection of 3D spatial data. In practice, GNSS signals may be blocked out by trees or buildings etc., and the errors of IMU are accumulated over time, leading to misalignments ranging from decimetre level to sub-metre level between point clouds from back and forth scans, or among multiple excursions. In this article, we propose a new time-variant model and an automatic solution to align the multi-strip MLS point clouds. Our methods are divided into three key steps: preprocessing to get representative points, two-step Iterative Closest Point registration to obtain correspondences, and time-variant errors estimation and correction of point clouds. We verified the solution using test data scanned in city road and highway environment. The experimental results demonstrate that the precision of the point clouds is significantly improved and the root mean square errors are about 4–5 cm.  相似文献   

11.
This article concerns the measurement process of mechanical parts using laser scanners. From the point of view of industrial applications, the objective is to guarantee the measurement accuracy during the scanning with regard to the geometrical product specifications. The proposed method can be summarized as follows: the first step consists of analyzing the interval of tolerance for the different specifications and to attribute to every geometrical entity a maximal uncertainty of measurement. This uncertainty depends on the angle of incidence between the laser plane and the scanned surface. In the second step, an approach based on the concept of visibility is used from the CAD model of the inspected part to find correct sensor guidance in a metrological point of view. A few position-points from this set are used to define the scanning path. Finally, the measurement can be carried out and the specifications can be controlled after the segmentation of the point clouds. An example illustrates the approach.  相似文献   

12.
云计算和云数据管理技术   总被引:7,自引:0,他引:7  
随着各种新技术的发展,企业的关键信息以几何级速度增长,更多的数据需要保存更长的时间.伴随着云计算技术的发展,云计算已经成为一种全新的互联网应用模式.而在云计算对海量的数据高效管理,云端数据精确精准快速查询成为越来越重要的问题.一个新的面向云计算的数据管理研究领域正逐渐形成,在云计算技术的基础上,提出了云数据管理的概念.分析GFS,BigTable,Dynamo等当前互联网主流云数据管理系统的基本原理,并针对未来云数据管理架构进行分析,最后指出了云数据管理领域的主要研究方向.  相似文献   

13.
在光学非接触三维测量中,复杂对象的重构需要多组测量数据的配准。为此,提出一种基于遗传算法的线扫描点云数据配准方法。曲面线扫描点云数据同一表面的拓扑结构在不同视图下曲率变化趋势相同,根据该性质,利用遗传算法识别两点云数据集的重叠区域,并求解子集的坐标变换矩阵,完成配准。实验结果表明,与ICP算法相比,该方法的运行速度较快,且配准精度较高。  相似文献   

14.
在牙齿三维矫正中需要对牙齿进行排列,常用方法是通过人机交互完成,效率不高。提出了一种基于粒子群的自动化排牙方法,将每颗牙齿上的特征点到标准牙弓曲线的距离和作为目标函数,利用粒子群算法对解空间进行搜索,在搜索过程中加入约束条件,得到牙齿移动的最终位置。利用算法对牙齿进行排列,可以省去人机交互中的平移等操作。实验结果表明:该算法能够有效地用于牙齿三维矫正中,提高了排牙效率。  相似文献   

15.
Statistical process control (SPC) methods have been extensively applied to monitor the quality performance of manufacturing processes to quickly detect and correct out-of-control conditions. As sensor and measurement technologies advance, there is a continual need to adapt and refine SPC methods to effectively and efficiently use these new data-sets. One of the most state-of-the-art dimensional measurement technologies currently being implemented in industry is the 3D laser scanner, which rapidly provides millions of data points to represent an entire manufactured part’s surface. Consequently, this data has a great potential to detect unexpected faults, i.e., faults that are not captured by measuring a small number of predefined dimensions. However, in order for this potential to be realized, SPC methods capable of handling these large data-sets need to be developed. This paper presents an approach to performing SPC using point clouds obtained through a 3D laser scanner. The proposed approach transforms high-dimensional point clouds into linear profiles through the use of Q–Q plots, which can be monitored by well established profile monitoring techniques. In this paper point clouds are simulated to determine the performance of the proposed approach under varying fault scenarios. In addition, experimental studies were performed to determine the effectiveness of the proposed approach using actual point cloud data. The results of these experiments show that the proposed approach can significantly improve the monitoring capabilities for manufacturing parts that are characterized by complex surface geometries.  相似文献   

16.
With the capability of capturing detailed geometry of bridges in minutes, laser scanning technology has attracted the interests of bridge inspectors and researchers in the domain of bridge management. A challenge of effectively utilizing laser scanned point clouds for bridge inspection is that inspectors need to manually extract and measure large numbers of geometric features (e.g., points) for deriving geometric information items (e.g., the minimum underclearance) of bridges, named as bridge surveying goals in this research. Tedious manual data processing impedes inspectors from quantitatively understanding how various data processing options (e.g., algorithms, parameter values) influence the data processing time and the reliabilities of the surveying goal results. This paper shows the needs of automatic workflow executions for extracting surveying goals from laser scanned point clouds, and presents a computational framework for addressing these needs. This computational framework is composed of formal representations of workflows and mechanisms for constructing and executing workflows. Using a prototype system implemented based on this framework, we constructed and quantitatively characterized three workflows for extracting three representative bridge surveying goals, using three metrics of workflow performance defined in this research: exhaustiveness of measurement sampling, reliability of surveying goal results, and time efficiency.  相似文献   

17.
One of the most important steps in utilizing ocean colour remote-sensing data is subtracting the contribution of the atmosphere from the signal at the satellite to obtain marine water-leaving radiance. To be carried out accurately, this requires clear-sky conditions, i.e. all clouds need to be excluded or masked from the data prior to atmospheric correction. The standard cloud mask used routinely in the processing of NASA global ocean colour data is based on a simple threshold applied to the Rayleigh-corrected top-of-atmosphere (TOA) radiance. The threshold is kept purposefully low to ensure high-quality processing at a global scale. As a consequence, the standard scheme can sometimes inadvertently mask important extreme optical events such as intense blue–green algal (cyanobacteria) blooms or the outflow of sediment-rich waters from some of the world’s largest rivers. However, the importance of these extreme conditions, both for ecological and hydrological applications, requires that they should be appropriately monitored. Therefore, an assessment of existing cloud masking schemes that could provide valuable alternatives was carried out. A new hybrid cloud mask was also proposed and similarly tested. The selected schemes were systematically assessed over a full annual cycle of satellite ocean colour data on three example regions: the Baltic Sea, the Black and Azov Seas, and the Amazon River delta. The results indicate that the application of alternative cloud masking schemes produces a significant increase in clear-sky diagnostics that varies with the scheme and the region. Major occurrences of extreme optical conditions, such as cyanobacteria blooms, or river deltas formerly excluded from any processing may be recovered, but some schemes may underestimate the amount of thin clouds potentially detrimental to ocean colour atmospheric correction.  相似文献   

18.
The conflict between spatial and temporal resolution of satellite systems, as well as the frequent presence of clouds in the images, has been a traditional limitation of remote sensing in the optical domain. Nevertheless, most of the conceptual tools and algorithms developed classically in remote sensing are based on the input of a series of cloud-free images from identical sensors. In this study, we propose a conceptual framework that is able to ingest data from several different sensors, make them homogeneous, eliminate clouds (virtually), and make them usable in a flexible, efficient, and transparent way. The methodology is based on previous developments such as spatial ‘downscaling’, temporal interpolation, and spectral transformations, but adds a conceptual framework that is able to integrate all of them and facilitate synergies between all these techniques.  相似文献   

19.
When scanning an object using a 3D laser scanner, the collected scanned point cloud is usually contaminated by numerous measurement outliers. These outliers can be sparse outliers, isolated or non-isolated outlier clusters. The non-isolated outlier clusters pose a great challenge to the development of an automatic outlier detection method since such outliers are attached to the scanned data points from the object surface and difficult to be distinguished from these valid surface measurement points. This paper presents an effective outlier detection method based on the principle of majority voting. The method is able to detect non-isolated outlier clusters as well as the other types of outliers in a scanned point cloud. The key component is a majority voting scheme that can cut the connection between non-isolated outlier clusters and the scanned surface so that non-isolated outliers become isolated. An expandable boundary criterion is also proposed to remove isolated outliers and preserve valid point clusters more reliably than a simple cluster size threshold. The effectiveness of the proposed method has been validated by comparing with several existing methods using a variety of scanned point clouds.  相似文献   

20.
The purpose of this study is to investigate the possibility of identifying overlapping clouds that contain thin cirrus overlying a lower-level water cloud by synergetic use of POLDER-3 (Polarization and Directionality of the Earth Reflectance) and MODIS (MODerate resolution Imaging Spectroradiometer) data. When thin cirrus clouds overlap the liquid cloud layer, the liquid information may be obtained by POLDER observations and the presence of the cirrus may be inferred from the MODIS CO2-slicing technique. An initial comparison of the POLDER cloud phase and the MODIS cloud-top pressure for one scene over East Asia also shows that a large portion of clouds declared as liquid water clouds by POLDER-3 correspond to the lower cloud-top pressures derived from MODIS. As a result, an overlapped cloud identification method is proposed under the assumption that the multilayered cloud would be present if the POLDER cloud phase is liquid water and the MODIS cloud-top pressure is less than 500 hPa. For the studied scene, the comparison of the multilayered cloud identification results with CloudSat and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) observations illustrates that the proposed method could detect multilayered clouds when the upper cirrus has a visible optical thickness of less than 2.0. Then the identification results are compared with the MODIS Cloud_Multi_Layer_Flag. It is indicated that the consistency between the multilayered clouds from the proposed synergy and MODIS-operational algorithm increases gradually from over 40% to nearly 100% with the increase of the confidence level of the MODIS multilayered clouds from the lowest to the highest. Further analysis suggests that the majority of multilayered clouds falsely classified as single-layered clouds by the proposed method may correspond to relatively thick cirrus covering lower-level water clouds. Additionally, an index by using the multilayered cloud detection differences from the two methods is proposed to provide some information on the optical thickness of the cirrus covering lower-level water cloud. Finally, quantitative comparisons are extended to four other scenes at different locations by using active measurements. The results also show that the mean visible optical thickness of the high-level clouds of the multilayered clouds detected by both methods (1.57) is remarkably less than that by only MODIS-operational method (2.84), which means that the differences between the results from the two methods are mainly caused by the different sensitivities to the visible optical thickness of the high-level cloud and could be used to indicate the range of the visible optical thickness of the cirrus clouds covering the lower-level water clouds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号