共查询到6条相似文献,搜索用时 0 毫秒
1.
This paper presents a hardware/software (HW/SW) co-design approach using SOPC technique and pipeline design method to improve design flexibility and execution performance of particle swarm optimization (PSO) for embedded applications. Based on modular design architecture, a Particle Updating Accelerator module via hardware implementation for updating velocity and position of particles and a Fitness Evaluation module implemented either on a soft-cored processor or Field Programmable Gate Array (FPGA) for evaluating the objective functions are respectively designed to work closely together to carry out the evolution process at different design stages. Thanks to the design flexibility, the proposed approach can tackle various optimization problems of embedded applications without the need for hardware redesign. To further improve the execution performance of the PSO, a hardware random number generator (RNG) is also designed in this paper in addition to a particle re-initialization scheme to promote exploration search during the optimization process. Experimental results have demonstrated that the proposed HW/SW co-design approach for PSO algorithms has good efficiency for obtaining high-quality solutions for embedded applications. 相似文献
2.
基于锦标赛选择遗传算法的随机微粒群算法 总被引:1,自引:0,他引:1
以保证全局收敛的随机微粒群算法SPSO为基础。提出了一种改进的随机微粒群算法-GAT-SPSO。该方法是在SPSO的进化过程中.以锦标赛选择机制下的遗传算法所产生的最优个体来代替SPSO中停止的微粒,参与下一代的群体进化。通过时三个多峰的测试函数进行仿真,其结果表明:在搜索空间维数相同的情况下,GAT-SPSO的收敛率厦收敛速度均大大优于SPSO。 相似文献
3.
A new gradient based particle swarm optimization algorithm for accurate computation of global minimum 总被引:1,自引:0,他引:1
Mathew M. Noel 《Applied Soft Computing》2012,12(1):353-359
Stochastic optimization algorithms like genetic algorithms (GAs) and particle swarm optimization (PSO) algorithms perform global optimization but waste computational effort by doing a random search. On the other hand deterministic algorithms like gradient descent converge rapidly but may get stuck in local minima of multimodal functions. Thus, an approach that combines the strengths of stochastic and deterministic optimization schemes but avoids their weaknesses is of interest. This paper presents a new hybrid optimization algorithm that combines the PSO algorithm and gradient-based local search algorithms to achieve faster convergence and better accuracy of final solution without getting trapped in local minima. In the new gradient-based PSO algorithm, referred to as the GPSO algorithm, the PSO algorithm is used for global exploration and a gradient based scheme is used for accurate local exploration. The global minimum is located by a process of finding progressively better local minima. The GPSO algorithm avoids the use of inertial weights and constriction coefficients which can cause the PSO algorithm to converge to a local minimum if improperly chosen. The De Jong test suite of benchmark optimization problems was used to test the new algorithm and facilitate comparison with the classical PSO algorithm. The GPSO algorithm is compared to four different refinements of the PSO algorithm from the literature and shown to converge faster to a significantly more accurate final solution for a variety of benchmark test functions. 相似文献
4.
Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design 总被引:1,自引:0,他引:1
Recently, genetic algorithms (GA) and particle swarm optimization (PSO) technique have attracted considerable attention among various modern heuristic optimization techniques. The GA has been popular in academia and the industry mainly because of its intuitiveness, ease of implementation, and the ability to effectively solve highly non-linear, mixed integer optimization problems that are typical of complex engineering systems. PSO technique is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. Since the two approaches are supposed to find a solution to a given objective function but employ different strategies and computational effort, it is appropriate to compare their performance. This paper presents the application and performance comparison of PSO and GA optimization techniques, for flexible ac transmission system (FACTS)-based controller design. The design objective is to enhance the power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem and both PSO and GA optimization techniques are employed to search for optimal controller parameters. The performance of both optimization techniques in terms of computational effort, computational time and convergence rate is compared. Further, the optimized controllers are tested on a weakly connected power system subjected to different disturbances over a wide range of loading conditions and parameter variations and their performance is compared with the conventional power system stabilizer (CPSS). The eigenvalue analysis and non-linear simulation results are presented and compared to show the effectiveness of both the techniques in designing a FACTS-based controller, to enhance power system stability. 相似文献
5.
6.
This paper describes an algorithm for optimum modifications for failure rate and repair time for a radial electrical distribution system. The modifications are with respect to a penalty cost function minimization. The cost function has been minimized subject to the energy based and customer oriented indices, i.e. AENS, SAIFI, SAIDI and CAIDI. Coordinated aggregation based particle swarm optimization (CAPSO) has been used for optimization. The algorithm has been implemented on a sample radial distribution system. The results obtained have been compared with those obtained using PSO. 相似文献