首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了应对聚丙烯(PP)普遍存在的韧性不足的缺点,研究了纳米碳酸钙(nano-CaCO3)对PP力学性能、结晶行为和微观结构的影响,并探讨了nano-CaCO3对PP的增韧机理。结果表明:nano-CaCO3对PP具有良好的增韧效果,当w(nano-CaCO3)为35%时,复合材料的室温(23℃)冲击强度最大,为2.43 kJ/m2,较纯PP提高了26.4%,但nano-CaCO3含量较高时,复合材料的冲击强度急剧下降。通过透射电子显微镜发现,高填充的纳米颗粒在PP基体中发生团聚,在应力作用下刚性填料与基体界面出现应力集中和剥离,破坏了原有纳米颗粒的增韧效果。  相似文献   

2.
以导电氧化钛晶须(C-TiO2)为填料,利用硬脂酸钠改性C-TiO2实现其选择性分布,并采用弹性体氢化苯乙烯-丁二烯-苯乙烯(SEBS)增容,通过熔融共混制备浅色导电C-TiO2/聚丙烯(PP)/聚苯乙烯(PS)共混物。通过傅立叶红外光谱(FTIR)和水接触角表征硬脂酸钠对C-TiO2的改性效果。利用SEM观察导电共混物断面形貌,PP/PS共混物呈海-岛结构,改性后的C-TiO2更倾向分布在PP相,同时SEBS的使用显著增强了PP/PS的界面黏附。测试了C-TiO2对导电共混物白度、力学性能以及导电性能的影响。结果表明:C-TiO2提高了导电共混物的力学性能和白度,当C-TiO2质量分数为23%时,导电C-TiO2/PP/PS共混物体积电阻率低至7.16×107Ω·cm。制备的浅色导电C-TiO2/PP/PS共混物在高色度要求的静电涂装领域具有潜在...  相似文献   

3.
采用带有超临界CO2注入装置的双阶挤出机组制备了聚丙烯/乙烯-辛烯共聚物/纳米碳酸钙(PP/POE/nano-CaCO3)三元复合材料,三者配比为100/10/10。采用不同的表征手段分析了三元复合材料的微观形态,探讨了超临界CO2挤出时对分散相的分散作用机理。结果表明,PP/POE/nano-CaCO3三元复合材料存在一个超临界CO2最佳注入量(2.0份,质量份,下同),此注入量时样品中弹性体POE粒子的分散粒径最小、粒径分布最窄,nano-CaCO3粒子同样也分散最均匀,基本看不到大的团聚体;PP晶体尺寸最小、数量最多;注入超临界CO2后基体中没有生成β晶。  相似文献   

4.
以聚丙烯(PP)、丙烯基弹性体和苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS)为主要原材料,采用熔融共混改性方法制备PP/丙烯基弹性体和PP/丙烯基弹性体/SEBS两种热塑性弹性体。采用转矩流变仪、拉伸试验机、硬度计和雾度计分别对共混体系的流变性能、拉伸性能、硬度和透光率进行分析与表征。结果表明,随着PP/丙烯基弹性体配比的增加,二元共混体系的平衡扭矩降低、硬度(邵A)提高、透光率变好、断裂伸长率增加,当其配比为1∶1时,共混体系的拉伸强度达到最大值(34.2 MPa);当PP与丙烯基弹性体配比为1:1不变时,随着SEBS含量增加,三元共混体系的平衡扭矩增大、硬度(邵A)减小、透光率变差、断裂伸长率提高;当PP、丙烯基弹性体和SEBS配比为47.5∶47.5∶5时,共混体系的透光率可达87%,硬度(邵A)为87,拉伸强度为35.2 MPa,断裂伸长率为750%,100%定伸强度为11.8 MPa,可满足医疗输液器械的要求。  相似文献   

5.
SEBS弹性体对聚丙烯形貌、力学性能和结晶性能的影响   总被引:1,自引:0,他引:1  
采用SEBS(氢化SBS)弹性体增韧PP.利用SEM、DSC、熔体指数、力学性能测试等研究不同SEBS含量的PP/SEBS共混物的力学性能、微观形态结构以及结晶性能.结果表明:SEBS可均匀分布在基体中,改善PP的加工流动性;SEBS的加入使得PP的球晶尺寸减小,结晶度降低;随着SEBS含量增加,共混物的冲击韧性有较大幅度的提高,而屈服强度略有下降:当加入25%的SEBS时,PP/SEBS共混物的冲击强度比纯PP提高近26倍,拉伸强度则仅仅降低23%.  相似文献   

6.
用双螺杆挤出机制备了聚丙烯(PP)/高密度聚乙烯(HDPE)/弹性体三元共混物,分别探讨了3种弹性体乙烯-辛烯嵌段共聚物(OBC)、苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)的含量对PP三元共混物力学性能的影响,并通过扫描电子显微镜观察其脆断表面形态。结果表明,OBC、SBS、SEBS和HDPE都对PP起到了一定的协同增韧作用,SEBS对PP的增韧效果最佳;SEM表明三元共混力学性能与相形态密切相关;所制备的PP/HDPE/OBC三元共混物的加工性能较好。  相似文献   

7.
PP/SEBS共混物的相形态、光学及力学性能   总被引:2,自引:1,他引:1  
将聚丙烯(PP)与氢化聚苯乙烯-丁二烯-聚苯乙烯嵌段共聚物(SEBS)在双螺杆挤出机中熔融共混,制备得到透明PP/SEBS共混物,并利用透光率雾度测定仪、广角X射线衍射仪、偏光显微镜、ARES流变扩展系统等进行表征。结果表明,随着SEBS含量的提高,聚丙烯的结晶性下降,共混物的透明性和低温冲击强度明显提高,而拉伸强度随之降低。流变学研究表明,随着SEBS含量的增加,PP/SEBS共混物形态由海岛结构逐渐演变为双连续相结构。  相似文献   

8.
采用苯乙烯-乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS)和马来酸酐接枝SEBS(SEBS-g-MA)增容改性聚苯醚/聚丙烯(PPO/PP)合金。通过正交试验综合考察了PP,SEBS/SEBS-g-MA含量对合金拉伸强度、冲击强度和弯曲强度的影响,优化了各组分之间的配比。结果表明,PPO/PP/SEBS-g-MA合金的综合力学强度较PPO/PP/SEBS合金高;当PPO/PP/SEBS质量比为48∶28∶24时,PPO/PP/SEBS(SEBS-g-MA)合金综合力学性能最佳;SEBS-g-MA和SEBS可降低PPO/PP合金的黏度,提高其加工性能。  相似文献   

9.
将不同配比的聚丙烯(PP)和乙烯-乙酸乙烯共聚物(EVA)进行共混,测试了共混物的拉伸强度和冲击强度;用差示扫描量热法研究了共混物的结晶性能;用扫描电镜(SEM)二次电子成像系统分析了试样的断口形貌,研究了EVA含量对共混物力学性能的影响。结果表明:EVA的加入提高了EVA/PP共混体系的韧性,同时降低了PP的结晶度。  相似文献   

10.
采用熔融共混法制备了聚乳酸(PLA)/纳米碳酸钙(nano-CaCO3)复合材料,利用X射线衍射仪、差示扫描量热仪(DSC)、万能拉力机和摆锤冲击试验机等研究了PLA/nano-CaCO3复合材料的结晶性能和力学性能。结果表明:nano-CaCO3粒径及用量、表面处理剂种类及用量均会对PLA/nano-CaCO3复合材料的结晶行为产生一定影响。当硬脂酸钠用量为3.5%(质量分数)时,与纯PLA相比,随着nano-CaCO3用量的增加,PLA/nano-CaCO3复合材料的拉伸强度逐渐下降,断裂伸长率和缺口冲击强度均逐渐升高。  相似文献   

11.
以等规聚丙烯(iPP)、纳米碳酸钙(nano-CaCO3)和甲基丙烯酸缩水甘油酯接枝改性抗冲共聚聚丙烯(PP-g-GMA)为原料,通过熔融共混法制备了iPP/nano-CaCO3/PP-g-GMA复合材料。研究了PP-g-GMA对iPP/nano-CaCO3/PP-g-GMA复合材料力学性能、结晶行为和微观结构的影响,并分析了其增韧机理。结果表明:PP-g-GMA和nano-CaCO3具有协同增韧作用,当两者用量均为40.0质量份时,iPP/nano-CaCO3/PP-g-GMA复合材料23℃时的冲击强度约为纯iPP的6.9倍。PP-g-GMA和nano-CaCO3均具有成核作用,促使基体球晶细化。PP-g-GMA中的橡胶相以球形海岛形式分散在iPP中,起到增韧作用。  相似文献   

12.
通过添加聚苯乙烯(PS)、热塑性弹性体苯乙烯-丁二烯-苯乙烯共聚物(SBS),以改善聚丙烯(PP)的性能。先采用熔融法制备PP/PS共混物,在确定PP,PS最佳配比的基础上,再添加SBS制备PP/PS/SBS共混物,确定了PP,PS及SBS的最佳配比。研究了PP/PS,PP/PS/SBS共混物的力学性能、热性能及熔体流动行为。结果表明,当PP与PS的质量比为70∶30时,PP/PS共混物的性能最好,其拉伸强度为28.5 MPa,拉伸弹性模量为1 214 MPa,弯曲弹性模量为1 752 MPa,冲击强度为14.0 kJ/m2,断裂应变为130%,维卡软化温度为143.9℃。当PP,PS及SBS的质量比为70∶30∶10时,PP/PS/SBS共混物的性能最好,其拉伸强度为23.2 MPa,拉伸弹性模量1 040 MPa,断裂应变为260%,冲击强度为18.0 kJ/m2,弯曲强度为36.5 MPa,弯曲弹性模量为1 297 MPa,定挠度弯曲应力为36.1 MPa,弯曲破坏应力为36.5 MPa,熔体流动速率为8.94 g/(10 min),维卡软化温度为139.0℃。  相似文献   

13.
纳米二氧化钛(TiO2)在聚丙烯(PP)中的分散性与材料的力学性能和抗菌性能密切相关。文章采用双螺杆挤出机将PP、TiO2、N,N’-乙撑双硬脂酰胺(EBS)和马来酸酐接枝聚丙烯(PP-g-MAH)共混,制备出不同分散剂EBS含量的PP/TiO2共混物,比较了分散剂EBS和增容剂PP-g-MAH对TiO2在PP中分散性与抗菌效果的影响。结果表明:EBS和PP-g-MAH均能够提高TiO2与PP的相容性,PP/TiO2复合材料的力学性能和抗菌性能均有所提高。小分子EBS能够进入PP相区,导致PP晶体规整度降低,阻碍形成片晶结构。PP-g-MAH作为桥梁增加了TiO2与PP的相容性并诱导PP提前结晶,使PP/TiO2共混物具有更好的结晶结构和更高的抗菌活性。  相似文献   

14.
利用熔融共混的方法制备了不同碳酸钙(CaCO_3)含量和不同氢化苯乙烯-丁二烯嵌段共聚物(SEBS)含量的聚丙烯(PP)/SEBS/CaCO_3三元复合材料。研究了CaCO_3加入对PP/SEBS二元复合材料脆-韧转变不同区域力学性能以及形态结构的影响。结果表明,在二元复合材料的脆性区(SEBS添加量是5份),CaCO_3的加入对复合材料的韧性提高效果不明显;在脆-韧转变区(SEBS添加量是20份),CaCO_3的加入能显著提高三元复合材料冲击性能,且在其添加量为10份时,复合材料的缺口冲击强度增加了108%,同时拉伸强度和模量也有一定程度增加。在韧性区(SEBS添加量是40份),CaCO_3的加入对冲击强度的提升不明显。  相似文献   

15.
用过氧化二异丙苯(DCP)将聚丙烯(PP)降解,制备降解PP与三元乙丙橡胶(EPDM)共混物,测试降解PP/EPDM共混物的冲击和拉伸性能,研究共混物的脆—韧转变,结果发现温度和EPDM含量对PP/EPDM共混物的韧性影响规律是相同的,增加温度和增加EPDM含量都能使PP/EPDM共混物的韧性增加。  相似文献   

16.
以共聚医用聚丙烯(PP)为基材,用氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS)对其进行增韧改性,研究了在γ射线辐射下,SEBS对PP耐辐射性能的影响。材料的耐辐射性能通过辐射前后力学性能的变化来评价。研究结果表明:PP基材经过40 kGy辐射后,其断裂伸长率和冲击强度明显降低,分别从651.2%和4.35 kJ/m2下降到 189.8%和3.01 kJ/m2;SEBS的加入可以显著提高PP的耐辐射性能;不同配比的PP/SEBS体系,其耐辐射性能和后期效应不同,PP/SEBS质量配比为90:10时,共混物的耐辐射性能最佳,材料的综合性能可以满足实际应用需求。  相似文献   

17.
分别采用膨胀石墨和纳米Fe3O4插层膨胀石墨改性氢化苯乙烯-丁二烯-苯乙烯嵌段共聚物(SEBS)/聚丙烯(PP)弹性体材料,探讨了膨胀石墨用量及纳米Fe3O4插层复合膨胀石墨对弹性体拉伸性能、回弹性和导电性能的影响规律。结果表明,膨胀石墨的加入可有效提高SEBS/PP弹性体的回弹性和导电性能,当膨胀石墨用量为3.5份(质量)时,弹性体的回弹性最佳,表面电阻率最低,但其拉伸强度有所下降。采用纳米Fe3O4插层膨胀石墨改性SEBS/PP弹性体可有效改善其拉伸性能,并可进一步降低表面电阻率和体积电阻率。  相似文献   

18.
《塑料》2016,(6)
将苯乙烯-乙烯/丁烯-苯乙烯嵌段共聚物(SEBS)与聚丙烯(PP)在双螺杆挤出机中熔融共混,制备PP/SEBS共混物。利用透光率雾度测定仪、偏光显微镜、扫描电子显微镜、差示量热扫描仪、广角X射线衍射仪等对材料性能进行表证。实验表明:随着SEBS的加入,共混物结晶温度和结晶度降低,结晶区与非经晶区界面模糊,晶粒尺寸减少,共混物透光率逐渐增加,雾度降低;复合材料PP/SEBS拉伸强度降低,断裂伸长率及低温冲击强度显著提高。  相似文献   

19.
采用扫描电子显微镜和偏光显微镜分别观察SEBS/PP共混材料的聚集态结构和PP晶体形貌,用WAXD、FT-IR和DSC三种方法测定不同热塑性聚酯弹性体(TPEE)含量下SEBS/PP共混材料中PP的结晶度,并对三种方法进行比较分析。结果表明:SEBS/PP共混材料为"海-岛"结构,SEBS对PP链段排列起阻碍作用,导致PP球晶不完善,为微晶。不同方法测定的结晶度值存在差异,但变化趋势一致,TPEE含量对PP结晶度无显著影响;WAXD测定结晶度准确,可以用于标定FT-IR法测定的SEBS/PP共混材料结晶度k值,其为0.99,也可用于校正DSC数据。这些研究为共混材料结晶结构的表征提供了研究和工程应用的方法,其中FT-IR和DSC技术更为简便。  相似文献   

20.
弹性体对透明PP结晶行为、透明性能和微观结构的影响   总被引:1,自引:0,他引:1  
以弹性体SEBS作为增韧剂制备高韧性透明PP材料.通过DSC、PLM、熔体指数、透明性能、力学性能等测试研究了不同SEBS含量的透明PP共混物的结晶行为、透明和力学性能.结果表明:随着SEBS含量的增加,共混物的冲击强度有较大幅度的提高,提高近20倍.当SEBS含量为15%时可以很好地改善体系的加工流动性;SEBS的加入量较大时会明显降低体系的结晶度;弹性体SEBS和成核剂并不具有协同成核效果;随着弹性体含量的逐渐增大,PP材料的透明性能大幅度降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号