首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
动态多目标优化问题(DMOPs)需要进化算法跟踪不断变化的Pareto最优前沿,从而在检测到环境变化时能够及时有效地做出响应.为了解决上述问题,提出一种基于决策变量关系的动态多目标优化算法.首先,通过决策变量对收敛性和多样性贡献大小的检测机制将决策变量分为收敛性相关决策变量(CV)和多样性相关决策变量(DV),对不同类型决策变量采用不同的优化策略;其次,提出一种局部搜索多样性维护机制,使个体在Pareto前沿分布更加均匀;最后,对两部分产生的组合个体进行非支配排序构成新环境下的种群.为了验证DVR的性能,将DVR与3种动态多目标优化算法在15个基准测试问题上进行比较,实验结果表明, DVR算法相较于其他3种算法表现出更优的收敛性和多样性.  相似文献   

2.
In this article we describe a novel Particle Swarm Optimization (PSO) approach to multi-objective optimization (MOO), called Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO). TV-MOPSO is made adaptive in nature by allowing its vital parameters (viz., inertia weight and acceleration coefficients) to change with iterations. This adaptiveness helps the algorithm to explore the search space more efficiently. A new diversity parameter has been used to ensure sufficient diversity amongst the solutions of the non-dominated fronts, while retaining at the same time the convergence to the Pareto-optimal front. TV-MOPSO has been compared with some recently developed multi-objective PSO techniques and evolutionary algorithms for 11 function optimization problems, using different performance measures.  相似文献   

3.
This paper proposes a multi-objective artificial physics optimization algorithm based on individuals’ ranks. Using a Pareto sorting based technique and incorporating the concept of neighborhood crowding degree, evolutionary individuals in the search space are evaluated at first. Then each individual is assigned a unique serial number in terms of its performance, which affects the mass of the individual. Thereby, the population evolves towards the direction of the Pareto-optimal front. Synchronously, the presented approach has good diversity, such that the population is spread evenly on the Pareto front. Results of simulation on a number of difficult test problems show that the proposed algorithm, with less evolutionary generations, is able to find a better spread of solutions and better convergence near the true Pareto-optimal front compared to classical multi-objective evolutionary algorithms (NSGA, SPEA, MOPSO) and to simple multi-objective artificial physics optimization algorithm.  相似文献   

4.
In evolutionary multi-objective optimization, balancing convergence and diversity remains a challenge and especially for many-objective (three or more objectives) optimization problems (MaOPs). To improve convergence and diversity for MaOPs, we propose a new approach: clustering-ranking evolutionary algorithm (crEA), where the two procedures (clustering and ranking) are implemented sequentially. Clustering incorporates the recently proposed non-dominated sorting genetic algorithm III (NSGA-III), using a series of reference lines as the cluster centroid. The solutions are ranked according to the fitness value, which is considered to be the degree of closeness to the true Pareto front. An environmental selection operation is performed on every cluster to promote both convergence and diversity. The proposed algorithm has been tested extensively on nine widely used benchmark problems from the walking fish group (WFG) as well as combinatorial travelling salesman problem (TSP). An extensive comparison with six state-of-the-art algorithms indicates that the proposed crEA is capable of finding a better approximated and distributed solution set.  相似文献   

5.
田红军  汪镭  吴启迪 《控制与决策》2017,32(10):1729-1738
为了提高多目标优化算法的求解性能,提出一种启发式的基于种群的全局搜索与局部搜索相结合的多目标进化算法混合框架.该框架采用模块化、系统化的设计思想,不同模块可以采用不同策略构成不同的算法.采用经典的改进非支配排序遗传算法(NSGA-II)和基于分解的多目标进化算法(MOEA/D)作为进化算法的模块算法来验证所提混合框架的有效性.数值实验表明,所提混合框架具有良好性能,可以兼顾算法求解的多样性和收敛性,有效提升现有多目标进化算法的求解性能.  相似文献   

6.
提出了一种基于DNA计算的非支配排序多目标遗传算法(DNA-GA)来对CR多载波传输参数进行优化。该算法通过非支配排序计算个体适应度,结合克隆操作使算法收敛于全局最优,并引入DNA基因级操作,以提高算法的搜索性能,保持种群的多样性。通过在不同服务需求情况下得到的仿真参数结果,证明了DNA-GA可以有效地优化CR传输参数。  相似文献   

7.
A self-adaptive differential evolution algorithm incorporate Pareto dominance to solve multi-objective optimization problems is presented. The proposed approach adopts an external elitist archive to retain non-dominated solutions found during the evolutionary process. In order to preserve the diversity of Pareto optimality, a crowding entropy diversity measure tactic is proposed. The crowding entropy strategy is able to measure the crowding degree of the solutions more accurately. The experiments were performed using eighteen benchmark test functions. The experiment results show that, compared with three other multi-objective optimization evolutionary algorithms, the proposed MOSADE is able to find better spread of solutions with better convergence to the Pareto front and preserve the diversity of Pareto optimal solutions more efficiently.  相似文献   

8.
提出一种基于膜优化理论的多目标优化算法,该算法受膜计算的启发,结合膜结构、多重集和反应规则来求解多目标优化问题。为了增强算法的适应能力,采用了遗传算法中的交叉与变异机制,同时在膜中引入外部档案集,并采用非支配排序和拥挤距离方法对外部档案集进行更新操作来提高搜索解的多样性。仿真实验采用标准的KUR和ZDT系列多目标问题对所提出的算法进行测试,通过该算法得出的非支配解集能够较好地逼近真实的Pareto前沿,说明所提算法在求解多目标优化问题上具有可行性和有效性。  相似文献   

9.
针对传统多目标算法早熟收敛及多样性不足的问题,提出了一种改进的非支配排序合作型协同进化遗传算法(Improved Non-dominated Sorting Cooperative Coevolutionary Genetic Algorithm,INSCCGA)。该算法利用外部档案存储每一代进化过程中产生的精英个体,并对其不断进行更新,以加快算法的收敛速度。同时提出了一种新型子种群之间协同进化的方式,增强候选解的多样性。利用ZDT系列标准测试函数,与经典的多目标进化算法NSGA-II以及多目标协同进化算法NSCCGA进行了对比,结果表明改进算法具有更好的收敛性以及均匀的解分布。  相似文献   

10.
多目标优化的日标在于使得解集能够快速的逼近真实Pareto前沿.针对解的分布性问题,以免疫克隆算法为框架,引入适应度共享策略,提出了一种新的具有良好分布性保持的多目标优化进化算法;算法建立外部群体以保存非支配解,以Pareto优和共亨适应度作为外部群体更新与激活抗体选择的双重标准.为了增强算法对决策空间的开发能力,引入...  相似文献   

11.
韩敏  刘闯  邢军 《自动化学报》2014,40(3):431-438
提出一种用于求解多目标优化问题的基于膜系统理论的演化算法. 受膜系统理论的功能和处理化合物方式的启发,设计了求解多目标优化问题的演化操作. 此外,在表层膜中,引入了非支配排序和拥挤距离两种机制改善算法的搜索效率. 采用ZDT(Zitzler-Deb-Thiele)和DTLZ(Deb-Thiele-Laumanns-Zitzler)多目标问题对所提算法进行测试,所提算法求得的候选解既能较好地逼近真实Pareto前沿,又能满足非支配解集多样性的要求. 仿真结果表明,所提方法求解多目标优化问题是可行和有效的.  相似文献   

12.
A fast and elitist multiobjective genetic algorithm: NSGA-II   总被引:162,自引:0,他引:162  
Multi-objective evolutionary algorithms (MOEAs) that use non-dominated sorting and sharing have been criticized mainly for: (1) their O(MN3) computational complexity (where M is the number of objectives and N is the population size); (2) their non-elitism approach; and (3) the need to specify a sharing parameter. In this paper, we suggest a non-dominated sorting-based MOEA, called NSGA-II (Non-dominated Sorting Genetic Algorithm II), which alleviates all of the above three difficulties. Specifically, a fast non-dominated sorting approach with O(MN2) computational complexity is presented. Also, a selection operator is presented that creates a mating pool by combining the parent and offspring populations and selecting the best N solutions (with respect to fitness and spread). Simulation results on difficult test problems show that NSGA-II is able, for most problems, to find a much better spread of solutions and better convergence near the true Pareto-optimal front compared to the Pareto-archived evolution strategy and the strength-Pareto evolutionary algorithm - two other elitist MOEAs that pay special attention to creating a diverse Pareto-optimal front. Moreover, we modify the definition of dominance in order to solve constrained multi-objective problems efficiently. Simulation results of the constrained NSGA-II on a number of test problems, including a five-objective, seven-constraint nonlinear problem, are compared with another constrained multi-objective optimizer, and the much better performance of NSGA-II is observed  相似文献   

13.
程鹏  张自力 《计算机工程》2009,35(14):238-240
为了有效检测多目标优化进化算法的性能,从3个方面进行多目标优化测试问题的设计,即约束条件、最优解分布的均匀性、算法逼近Pareto最优前沿的难度,采用NSGA-Ⅱ算法对这些测试问题进行仿真实验,并将算法求得的最优解可视化。结果显示,测试问题能够有效检测算法在上述3方面的性能。  相似文献   

14.
This paper presents an efficient metamodel-based multi-objective multidisciplinary design optimization (MDO) architecture for solving multi-objective high fidelity MDO problems. One of the important features of the proposed method is the development of an efficient surrogate model-based multi-objective particle swarm optimization (EMOPSO) algorithm, which is integrated with a computationally efficient metamodel-based MDO architecture. The proposed EMOPSO algorithm is based on sorted Pareto front crowding distance, utilizing star topology. In addition, a constraint-handling mechanism in non-domination appointment and fuzzy logic is also introduced to overcome feasibility complexity and rapid identification of optimum design point on the Pareto front. The proposed algorithm is implemented on a metamodel-based collaborative optimization architecture. The proposed method is evaluated and compared with existing multi-objective optimization algorithms such as multi-objective particle swarm optimization (MOPSO) and non-dominated sorting genetic algorithm II (NSGA-II), using a number of well-known benchmark problems. One of the important results observed is that the proposed EMOPSO algorithm provides high diversity with fast convergence speed as compared to other algorithms. The proposed method is also applied to a multi-objective collaborative optimization of unmanned aerial vehicle wing based on high fidelity models involving structures and aerodynamics disciplines. The results obtained show that the proposed method provides an effective way of solving multi-objective multidisciplinary design optimization problem using high fidelity models.  相似文献   

15.
Wu  Dongmei  Pun  Chi-Man  Xu  Bin  Gao  Hao  Wu  Zhenghua 《Multimedia Tools and Applications》2020,79(21-22):14319-14339

In this paper, a multi-objective bird swarm algorithm (MOBSA) is proposed to cope with multi-objective optimization problems. The algorithm is explored based on BSA which is an evolutionary algorithm suitable for single objective optimization. In this paper, non-dominated sorting approach is used to distinguish optimal solutions and parallel coordinates is applied to evaluate the distribution density of non-dominated solution and further update the external archive when it is full to overflowing, which ensure faster convergence and more widespread of Pareto front. Then, the MOBSA is adopted to optimize benchmark problems. The results demonstrate that MOBSA gets better performance compared with NSGA-II and MOPSO. Since a vehicle power train problem could be treated as a typical multi-objective optimization problem with constraints, with integration of constrained non-dominated solution, MOBSA is adopted to acquire optimal gear ratios and optimize vehicle power train. The results compared with other popular algorithm prove the proposed algorithm is more suitable for constrained multi-objective optimization problem in engineering field.

  相似文献   

16.
采用精英策略的非支配排序遗传算法(NSGA-II)种群收敛分布不均匀,全局搜索能力较弱。针对该问题,基于现有的算法,提出一种基于聚类学习机制的多目标进化算法KMCNSGA—II。利用K均值聚类对目标函数和个体分别进行聚类,对聚类后的个体进行局部学习,以提高适应度。将该算法应用于经典的多目标约束和非约束测试函数中,通过收敛性指标世代距离和多样性指标△进行性能评价。实验结果表明,与NSGA—II算法相比,该算法在算法收敛性和种群多样性保持方面均有明显提高。  相似文献   

17.
王蕊  顾清华 《控制与决策》2021,36(11):2656-2664
针对约束多目标进化算法求解约束多目标问题时难以平衡收敛性、多样性和可行性的问题,提出一种协作进化算法(ConMOEA).将自适应形状估计进化算法(AGE-MOEA)和非支配排序遗传算法(NSGA-II)优势融合,采用Deb约束支配原则非支配排序组合种群实现个体优选,在临界层中根据最大拥挤距离或生存值选择所需个体,最终形成新种群,实现种群快速接近Pareto前沿并具有良好分布性.为验证所提出算法的性能,对近期提出的一组DOC基准函数进行仿真计算,采用反世代距离(IGD)和超体积(HV)两个通用评价指标,与NSGA-II-CDP、C-TAEA、PPS、ToP、A-NSGA-III、AGE-MOEA约束多目标算法进行比较分析,实验结果证明ConMOEA具有更优的收敛性和多样性.  相似文献   

18.
魏心泉  王坚 《控制与决策》2014,29(5):809-814

针对传统算法求解多目标资源优化分配问题收敛慢、Pareto解不能有效分布在Pareto 前沿面的问题, 提出一种新的Memetic 算法. 在遗传算法的交叉算子中引入模拟退火算法, 加强了遗传算法的局部搜索能力, 加快了收敛速度. 为了使Pareto 最优解均匀分布在Pareto 前沿面, 在染色体编码中引入禁忌表, 增加了种群的多样性, 避免了传统遗传算法后期Pareto 解集过于集中的缺点. 通过与已有的遗传算法、蚁群算法、粒子群算法进行比较, 仿真实验表明了所提出算法的有效性, 并分析了禁忌表长度和模拟退火参数对算法收敛性的影响.

  相似文献   

19.
Evolutionary algorithms have been successfully applied to various multi-objective optimization problems. However, theoretical studies on multi-objective evolutionary algorithms, especially with self-adaption, are relatively scarce. This paper analyzes the convergence properties of a self-adaptive (μ+1)-algorithm. The convergence of the algorithm is defined, and general convergence conditions are studied. Under these conditions, it is proven that the proposed self-adaptive (μ+1)-algorithm converges in probability or almost surely to the Pareto-optimal front.  相似文献   

20.
《自动化博览》2011,(Z2):145-150
In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the non-dominated set as well as the diversity of population in multi-objective problems,in this paper,a Novel Cloud -based quantum -inspired multi-objective evolutionary Algorithm(CQMEA) is proposed.CQMEA is proposed by employing the concept and principles of Cloud theory.The algorithm utilizes the random orientation and stability of the cloud model,uses a self-adaptive mechanism with cloud model of Quantum gates updating strategy to implement global search efficient.By using the self-adaptive mechanism and the better solution which is determined by the membership function uncertainly,Compared with several well-known algorithms such as NSGA-Ⅱ,QMEA.Experimental results show that(CQMEA) is more effective than QMEA and NSGA -Ⅱ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号