首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种结合人工蜂群和K-均值的混合聚类算法   总被引:2,自引:1,他引:1  
传统的K-均值聚类算法虽然收敛速度快,但由于过度依赖初始聚类中心,算法的鲁棒性较差。为此,提出了一种改进人工蜂群算法与K-均值相结合的混合聚类方法,将改进人工蜂群算法能调节全局寻优能力与局部寻优能力的优点与K-均值算法收敛速度快的优点相结合,来提高算法的鲁棒性。实验表明,该算法不仅克服了传统K-均值聚类算法稳定性差的缺点,而且聚类效果也有了明显改善。  相似文献   

2.
    
Multi-objective optimization has been a difficult problem and a research focus in the field of science and engineering. This paper presents a novel multi-objective optimization algorithm called elite-guided multi-objective artificial bee colony (EMOABC) algorithm. In our proposal, the fast non-dominated sorting and population selection strategy are applied to measure the quality of the solution and select the better ones. The elite-guided solution generation strategy is designed to exploit the neighborhood of the existing solutions based on the guidance of the elite. Furthermore, a novel fitness calculation method is presented to calculate the selecting probability for onlookers. The proposed algorithm is validated on benchmark functions in terms of four indicators: GD, ER, SPR, and TI. The experimental results show that the proposed approach can find solutions with competitive convergence and diversity within a shorter period of time, compared with the traditional multi-objective algorithms. Consequently, it can be considered as a viable alternative to solve the multi-objective optimization problems.  相似文献   

3.
蜂群—蚁群自适应优化算法*   总被引:1,自引:0,他引:1  
为了解决蚁群算法在求解连续函数优化问题时,存在局部搜索能力较差的缺陷,提出一种新颖的自适应蜂群—蚁群优化算法。新算法在蚁群优化算法的基础上,设计了一种参数q的自适应机制,进而减少了参数个数,提高了其鲁棒性;根据蜂群算法基本思想,利用雇佣蜂和观察蜂设计了高效的局部搜索算子,从而提升了算法的局部能力。针对五个标准测试函数的仿真实验结果表明:与蚁群优化算法相比,新算法的全局和局部寻优能力均得到了极大的提升。  相似文献   

4.
针对分数阶PID控制器参数整定过程参数多复杂性大,传统靠经验试凑的方法不易实现且优化效果差的问题,提出了一种改进的人工蜂群算法,实现分数阶PID控制器参数的整定;该算法通过改进人工蜂群算法中搜索方程,并引入一个淘汰机制,对分数阶控制器参数进行群智能搜索,将搜索到的参数送至分数阶PID控制器中反复迭代,以带有权值的误差绝对值积分指标(AIE)作为人工蜂群寻优的目标函数,最后得出控制器;本文以非线性系统为被控对象,经过实例仿真,验证了该算法实现的控制器比传统整数阶控制器和未改进的人工蜂群算法实现的分数阶控制器的动态性能和稳态性能都有所提高,在超调、上升时间、振荡性方面都优于未改进算法。  相似文献   

5.
蜂群算法研究综述*   总被引:8,自引:1,他引:7  
蜂群算法是一种模仿蜜蜂繁殖、采蜜等行为的新兴的群智能优化技术,近几年备受研究者关注。初步探讨了蜂群算法的理论基础,详细论述了基于蜜蜂繁殖行为和采蜜行为的两类蜂群算法的生物学机理及其最常见算法的应用研究情况,并分析比较了遗传算法、蚁群算法、粒子群算法和蜂群算法的优缺点、适用范围及性能。最后,总结了现有蜂群算法存在的问题,并指出其未来的研究方向。  相似文献   

6.
    
Aiming at resolving the influence maximization (IM) problem in social networks, this paper proposes a three-layer-comprehensive-influence evaluation (TLCIE) model to measure the spread range of combinational nodes in the independent or weighted cascade models. The TLCIE is an enhanced three-hop influence spread model by integrating the intra- and inter-layer’s propagation effect, which improves the accuracy of propagation simulation and the reliability of parameter estimation. Then, an adaptive discrete artificial bee colony algorithm (ADABC) is devised to resolve the TLCIE model efficiently. In ADABC, the comprehensive-learning guided (CLG) updating rules, the degree-improvement initialization method and the semi-abandonment scout bee strategy are incorporated to enhance the search ability. Finally, the proposed model and algorithm are tested on a set of real-world social network instances, and the experimental results validate their effectiveness and efficiency.  相似文献   

7.
人工蜂群算法自提出以来,受到很多学者的关注,并涌现出大量的研究文献。本文介绍了2013年以来国内外蜂群算法的研究成果,包括加快收敛、提高开采能力、提高算法性能方面的改进;针对约束优化、平行化运行、多目标寻优等多方面的研究;以及人工蜂群算法在神经网络、无线传感网、决策调度、图像信号处理等多个领域的研究现状,并指出人工蜂群算法有待进一步解决的问题及未来的研究方向。  相似文献   

8.
多选择背包问题是组合优化中的NP难题之一,采用一种新的智能优化算法——人工蜂群算法进行求解。该算法通过雇佣蜂、跟随蜂和侦察蜂的局部寻优来实现全局最优。基于算法实现的核心思想,用MATLAB编程实现,对参考文献的算例进行仿真测试。与其他算法进行了比较,获得了满意的结果。这说明了算法在解决该问题上的可行性与有效性,拓展了人工蜂群算法的应用领域。  相似文献   

9.
为了提高二进制人工蜂群算法的全局探索能力,提出一种基于分布估计算法的二进制人工蜂群算法,并应用到最优多用户检测技术中,设计出基于分布估计二进制人工蜂群算法的多用户检测方案。该方案采用直接针对离散域的多维邻域搜索策略,加快了收敛速度,避免了连续域到离散域的转换,同时利用分布估计算法获得的全局统计信息产生候选解,提高了算法性能。仿真结果表明,与传统检测器相比,所设计检测器的收敛速度明显加快,误码率性能和抗远近效应能力显著提高。  相似文献   

10.
孙倩  陈昊  李超 《计算机应用研究》2020,37(6):1707-1710,1764
针对大数据聚类算法计算效率与聚类性能较低的问题,提出了一种基于改进人工蜂群算法与MapReduce的大数据聚类算法。将灰狼优化算法与人工蜂群算法结合,同时提高人工蜂群算法的搜索能力与开发能力,该策略能够有效地提高聚类处理的性能;采用混沌映射与反向学习作为ABC种群的初始化策略,提高搜索的解质量;将聚类算法基于Hadoop的MapReduce编程模型实现,通过最小化类内距离的平方和实现对大数据的聚类处理。实验结果表明,该算法有效地提高了大数据集的聚类质量,同时加快了聚类速度。  相似文献   

11.
李彦苍  彭扬 《控制与决策》2015,30(6):1121-1125
为了克服人工蜂群算法在处理复杂性问题时收敛速度慢、收敛精度不高、易早熟等缺陷,在原始人工蜂群算法的基础上引入信息熵。信息熵本身是不确定性的一种度量,由信息熵的值来度量人工蜂群算法中跟随蜂选择的不确定性,通过控制信息熵的值达到控制算法中跟随蜂选择过程的目的,实现算法的自适应调节。通过对测试函数和不同规模TSP问题的模拟仿真,对人工蜂群算法、蚁群算法和其他改进方法进行了对比,验证了所提出改进方法的可行性和有效性。  相似文献   

12.
随着数据的海量增长,数据聚类算法的研究面临着海量数据挖掘和处理的挑战;针对K-means聚类算法对初始聚类中心的依赖性太强、全局搜索能力也差等缺点,将一种改进的人工蜂群算法与K-means算法相结合,提出了ABC_Kmeans聚类算法,以提高聚类的性能;为了提高聚类算法处理海量数据的能力,采用MapReduce模型对ABC_Kmeans进行并行化处理,分别设计了Map、Combine和Reduce函数;通过在多个海量数据集上进行实验,表明ABC_Kmeans算法的并行化设计具有良好的加速比和扩展性,适用于当今海量数据的挖掘和处理。  相似文献   

13.
对蜂群算法的性能进行全面的测试和研究,实验分析了维数和粒子数对算法的影响,侦察蜂的活动对算法的影响以及初始解的位置对算法的影响。同时受遗传算法的启发,将典型的选择机制应用到蜂群算法并对其进行改进,并比较不同选择机制下蜂群算法的性能。实验结果表明,在粒子数为40,维数为10或者30,均匀分布初始解的位置,采用确定式选择法和无放回余数选择法代替蜂群算法中轮盘赌的选择方法的条件下,蜂群算法得到整体最好的优化结果。  相似文献   

14.
提出一种具有引领蜂与跟随蜂动态协调机制的改进人工蜂群算法(DHABC)。根据优化函数的寻优状态,设计了引领蜂与跟随蜂动态角色转换机制,以更好地适应全局和局部搜索;为使算法能够更好地进行局部兼顾更大范围搜索,设计了引领蜂与跟随蜂间位置信息的共享方式;为提高算法的求解速度,设计了跟随蜂进化代数起始值的计算方法;通过仿真和比较实验,改进算法较其他ABC改进算法及其他智能优化算法既参数少,便于应用,又求解精度较高。  相似文献   

15.
邢熔华  黄海燕 《计算机科学》2016,43(12):273-276
无线传感器网络(Wireless Sensor Network,WSN)系统性能的提高,离不开对WSN中每一个传感器节点地理位置的精准定位。全局人工蜂群算法在基本人工蜂群算法的基础上,在邻域搜索后将迭代最优解添加到新解的更新公式中,提高了算法的开发能力。但将其应用于WSN节点位置求解时,存在计算时间长、收敛不稳定的问题。提出一种改进的全局人工蜂群算法,在邻域搜索后对新解进行衡量,若新解适应值在可接受的范围内,与迭代最优解进行交叉操作;若新解适应值较好,不与迭代最优解进行交叉操作;若新解适应值较差,舍弃新解。这较好地平衡了算法的探索和开发能力。求解WSN节点位置时,证明了该算法有更快的收敛速度和更好的收敛效果。  相似文献   

16.
沈艳霞  陈杰  吴定会 《控制与决策》2017,32(12):2176-2182
提出一种基于进化知识融合的多目标人工蜂群算法.首先,采用精英群体知识和种群自身进化知识混合引导引领蜂进化,保持种群的多样性和优异性;然后,将一种融合个体支配关系和种群分布关系的方法引入跟随蜂的概率选择中,合理选择个体进行深度开发以改善算法收敛性能和分布性能;最后,提出一种更为严格的外部档案维护策略以降低外部档案维护成本,提高解集的分布性能.通过求解标准测试函数,并与其他3种多目标优化算法进行比较,仿真结果表明所提出算法具有良好的收敛性能和分布性能,且解集的覆盖范围更广.  相似文献   

17.
模糊C-均值聚类算法在数据挖掘领域有着广泛的使用背景,而对初始点的敏感和较差的搜索能力,限制了算法的进一步推广应用。人工蜂群算法具有对初始点不敏感、适应能力强和搜索能力强等优点,并且针对人工蜂群算法对单峰问题收敛速度慢、多峰问题容易陷入局部最优等问题,通过引入差分进化算法中变异和交叉思想,改善蜂群算法的收敛速度,平衡局部搜索和全局搜索能力。然后将改进的人工蜂群算法和模糊C-均值聚类算法结合得到基于改进人工蜂群的模糊C-均值聚类算法,并在多个国际标准数据集上进行验证,实验结果表明此算法在多个衡量指标上取得了明显的改进。  相似文献   

18.
19.
在图像分割中,为了准确地把目标和背景分离出来,提出了一种基于多目标粒子群和人工蜂群混合优化的阈值图像分割算法。在多目标优化的框架下,将改进的类间方差准则和最大熵准则作为适应度函数,通过粒子群和蜂群混合优化这2个适应度函数来获得1组非支配解。同时,为了提高全局和局部搜索能力,在蜂群进化时,将粒子群的全局最优解引入到人工蜂群算法的雇佣蜂阶段蜜源的更新中,并对搜索方程进行改进。最后通过类间差异和改进的类内差异的加权比值,从一组非支配解中选取最优阈值。实验结果表明,该算法能够取得理想的分割结果。  相似文献   

20.
为了充分利用种群的全局统计信息,将分布估计算法引入二进制人工蜂群算法,提出一种基于分布估计的二进制人工蜂群算法。该算法利用分布估计算法获得的全局统计信息引导候选解的产生,提高了全局探索能力;采用直接针对离散域的多维邻域更新策略,加快了收敛速度,降低了计算复杂度。仿真结果表明,与传统二进制人工蜂群算法相比,改进算法在优化精度、收敛速度和鲁棒性方面均有明显改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号