首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在智能车辆路径跟踪控制研究中,提出了一种位置误差控制器,由期望横摆角速度生成器和模糊PID控制器组成。建立车辆的运动学及位置误差模型,在当前车辆质心与目标路径预瞄点间实时规划虚拟行驶路径。分析车辆沿虚拟路径行驶时期望横摆角速度的变化率的计算,代入车辆行驶状态及目标跟踪路径信息得到期望横摆角速度生成器。将期望横摆角速度生成器与模糊PID控制器结合,以双移线道路为目标跟踪路径进行联合跟踪仿真。仿真结果表明跟踪偏差主要发生在曲线道路与直线道路连接处,且车辆在低速下跟踪精度较高,稳定性好,中高速时跟踪精度及稳定性都降低。  相似文献   

2.
林程  曹放  梁晟  高翔  董爱道 《机械工程学报》2019,55(22):123-130
为改善车辆在复杂工况下的操纵稳定性,解决低附着路面易失稳的问题,针对后驱双电机轮边驱动电动汽车提出一种结合直接横摆控制与主动转向控制的操纵稳定性控制策略。控制策略采用分层控制结构:上层控制器采用多输入多输出系统的模型预测控制,对目标附加横摆力矩与前轮主动转向角进行求解;下层转矩分配控制器采用混杂模型预测控制(hMPC),将轮胎纵向力的非线性特征简化为分段的混杂系统,在分配驱动转矩时考虑车轮在不同工况下的滑转情况。搭建了基于dSPACE实时仿真系统的仿真平台,在高附着、低附着路面下进行半实物仿真试验。仿真结果表明,与二次规划(QP)转矩分配算法相比,高附着路面工况下平均相对误差减小了17.64%,方均根误差减小了42.86%,最大偏离误差相对减少了7.64%;低附着路面工况下可以有效防止车辆失稳,改善操纵稳定性。  相似文献   

3.
针对车辆在轨迹跟踪过程中,尤其是高速转向等极限工况下,易出现车辆跟踪精度差和失稳的问题,以分布式驱动智能汽车为研究对象,提出一种考虑横向稳定性的轨迹跟踪协同控制策略。首先,建立车辆纵向、横向以及横摆运动的三自由度动力学模型,设计了基于模型预测控制的主动转向控制器,通过优化求解得到跟踪期望轨迹的最佳前轮转角。然后,采用滑模控制设计横摆力矩控制器,将横摆角速度和质心侧偏角作为联合变量,利用积分二自由度控制模型,计算车辆稳定的等效附加横摆力矩。最后,采用二次规划算法设计最优力矩分配控制器,以满足总的驱动力矩和附加横摆力矩的控制需求。仿真试验结果表明,控制系统在极限高速工况下,能够使车辆精确、稳定的跟踪期望轨迹。  相似文献   

4.
针对采用传统模型预测控制器的车辆在弯道内跟踪精度难以保证的问题,本文提出了一种基于状态反馈的路径跟踪横向控制策略。基于车辆动力学模型,建立考虑轮胎滑移包络线约束条件的路径跟踪模型预测控制器,并根据车速选择合适的控制器时域参数;以车辆质心位置为控制点建立车辆跟踪误差模型,结合车辆当前位置横摆角偏差建立状态反馈调节器,通过LQR最优控制方法对无人车姿态进行校正。利用MATLAB/Simulink和Carsim软件对改进的状态反馈控制策略进行了仿真验证,典型双移线道路仿真试验表明:中低车速下车辆路径跟踪横向偏差降低了16%以上,横摆角偏差降低了33%以上,所设计控制器能够有效提高车辆路径跟踪精度,可保证车辆对变曲率弯道具有适应性和行驶稳定性。  相似文献   

5.
为了提高分布式电驱动汽车列车的横向稳定性,提出了一种基于线性二次型调节器(Linear Quadratic Regulator, LQR)的极值优化驱动力矩控制策略。建立了三自由度理想汽车列车模型,通过基于LQR的附加横摆力矩控制器得到附加横摆力矩,运用极值法合理分配驱动力矩,采用TruckSim与MATLAB/Simulink联合仿真平台分别进行了中速双移线和高速单移线工况仿真。仿真结果表明,中速双移线工况下,所设计的极值优化驱动力矩控制策略相比于平均分配控制策略,其牵引车的质心侧偏角峰值降低了22.78%,牵引车与挂车的横摆角速度峰值分别降低了5.46%和2.86%;高速单移线工况下,其牵引车与挂车的质心侧偏角峰值分别降低了22.85%和17.19%,横摆角速度峰值分别降低了10.40%和8.16%,提高了分布式电驱动汽车列车中高速行驶时的横向稳定性。为验证极值优化驱动力矩控制策略在实时系统中的控制效果,进行了硬件在环测试,结果表明硬件在环测试结果与仿真结果一致。  相似文献   

6.
为满足分布式驱动车辆在不同行驶工况下的良好操纵稳定性需求,基于横摆角速度控制分别设计了侧重于改善车辆操纵性和横向稳定性的2种横向动力学控制目标。首先,根据可拓控制器设计2种横向动力学控制目标的动态权重系数,且以质心侧偏角和路面附着系数为调整参量进行实时动态调整;然后,利用积分滑模控制器计算出所需的附加横摆力矩并将其合理分配到4个独立驱动车轮进行驱动控制;最后,通过硬件在环试验平台进行试验分析,结果表明该控制策略能够很好地提高车辆操纵性和横向稳定性。  相似文献   

7.
针对四轮驱动电动汽车行驶时路面峰值附着系数和附着利用率变化的问题,提出利用直接横摆力矩控制提高操纵稳定性的控制策略。该策略采用分层控制,上层控制器负责目标车速的追踪、滑移率调整力矩的计算、以及根据行驶危险程度实现对质心侧偏角和横摆角速度的协调控制,下层控制器包括以轮胎利用率最优为目标的分配算法及集成滑移率控制的分配算法,根据滑移率大小实时切换。Carsim-Simulink联合仿真结果表明,在对开路面行驶时,相比于转矩平均分配控制策略,该控制策略能够使车辆具有良好操稳性的同时保持各车轮处于最佳滑移率区间内,有效改善了车辆性能。  相似文献   

8.
为提高独立驱动电动汽车在极限工况下的稳定性,提出了基于神经网络PID控制策略的直接横摆力矩决策算法,控制质心侧偏角和横摆角速度并进行转矩分配。基于2自由度车辆模型的线性化特征参数与实际车辆控制目标的偏差,引入动量优化项对神经网络权值进行在线更新,计算出跟踪理想质心侧偏角和横摆角速度所需的直接横摆力矩,通过车辆前后轴动态载荷估计,考虑驱动电机饱和输出力矩和路面限制条件的约束,对各驱动轮进行直接横摆力矩分配。将算法应用于CarSim/Simulink联合仿真模型进行工况仿真实验。结果表明,该方法能够保证车辆在中速情况下于光滑路面紧急转向和紧急移线换道操作稳定性,以及在路面湿滑情况下高速超车快速并线的稳定性。  相似文献   

9.
《机械科学与技术》2016,(9):1414-1420
为了提高轮边驱动电动汽车行驶的稳定性,提出横摆力矩滑模控制的稳定性控制策略,采用层次化结构的稳定性控制器。针对极限工况下车辆的状态估计误差偏大,基于无迹卡尔曼滤波(UKF)理论设计了适用于轮边驱动电动汽车的状态估计方法,根据UKF估计的车辆状态计算,设计滑模运动控制器计算所需的横摆力矩。考虑到转矩分配时的实际约束条件,设计了控制分配器,采用二次规划方法优化分配各轮上的驱动/制动扭矩。仿真结果表明:该稳定性控制器能够快速施加驱动力或制动力,及时、准确地控制车辆的横摆角速度和质心侧偏角,提高车辆的操纵稳定性。  相似文献   

10.
针对线性二次型调节器(LQR)在车道保持辅助(lane keeping assist,LKA)控制系统中参数固定不变的局限性,提出了基于粒子群优化(PSO)算法改进LQR参数的前轮转向控制策略。首先,建立车道保持模型,根据车路误差模型设计基于LQR反馈前馈的LKA控制器,计算车辆所需的补偿角;然后,利用PSO算法优化控制器中矩阵Q的参数以减小误差提高精度,满足控制系统对车速的自适应要求;最后,采取Matlab/Simulink与Carsim联合的仿真计算验证控制器的有效性。结果显示:在中高速基于PSO改进LQR参数的控制器控制下,车辆能稳定地跟踪车道中心线,跟踪精度高,横下位置偏差、横摆角偏差和前轮转角保持较小值,可明显提高车辆中高速的横向稳定性和行驶安全性。  相似文献   

11.
针对四轮毂电机独立驱动汽车各轮力矩解耦可控的特点,分析车辆转向受力对四轮独立驱动电动汽车行驶稳定性的影响,提出四轮独立驱动电动汽车转向稳定性控制策略,为四轮独立驱动电动汽车四轮转矩协调控制,提升整车行驶稳定性提供了思路.基于模型跟踪控制的思想,采用分层控制思想设计控制器,控制器包含参考模型、顶层控制器、底层控制分配器.采用带质心侧偏角约束的2自由度车辆模型作为参考模型,设计出一种新的非线性联合滑模变结构主动控制的顶层控制器,该方法可以在一定程度上实现车辆横摆角速度和质心侧偏角的解耦控制,避免了横摆角速度和质心侧偏角的较大变化,从而保证汽车稳定性.在底层控制分配器中,采用基于轮胎稳定裕度最大化的最优分配方法.在Carsim软件中,搭建四轮轮毂电机独立驱动电动汽车模型,在Simulink软件中搭建控制策略模型.针对双移线工况,Carsim/Simulink联合仿真的结果表明,滑模变结构控制器具有较好的收敛性,控制分配模块可以实现四轮力矩的优化分配,能够提升车辆在极限工况下的稳定性.研究将为轮毂电机驱动车辆分布式协调控制提供理论支撑.  相似文献   

12.
针对四轮独立驱动电动汽车直线行驶跑偏及行驶稳定性问题,提出驱动转矩协调控制策略。该策略采用分层控制逻辑,上层控制逻辑层负责车速跟随控制、附加横摆力矩计算、驱动防滑控制;下层控制逻辑层负责驱动转矩协调分配。基于车辆动力学软件Carsim和MATLAB/Simulink搭建四轮独立驱动电动汽车协调控制系统仿真模型,在高附着、低附着和对开路面等典型工况进行仿真,结果表明,相比于转矩平均分配及无控制,协调控制策略使车辆横摆角速度保持在0±0.05(°)/s,且车轮滑转率控制在最优滑转率范围内,提高了车辆直驶稳定性。  相似文献   

13.
多轴轮边驱动铰接客车兼具铰接车辆的力学特性和分布驱动的动力特性,针对其在极限工况中可能出现的折叠、甩尾、横摆等问题,进行横摆稳定性控制策略研究;建立线性三自由度参考模型,通过粒子滤波对前车厢的相关状态变量进行估计,估计结果证明模型的有效性;根据三自由度参考模型得到理想响应,采用分层控制的思想,在上层采用模糊等效切换滑模控制,前车厢采用横摆角速度和铰接角联合控制,后车厢采用横摆角速度控制,从而得到前后车厢所需附加横摆力矩;下层采用二次规划法,以轮胎附着利用率为优化目标进行转矩分配。在d SPACE-ASM平台上进行转向角阶跃工况和双移线工况的仿真分析。结果表明,该控制策略能够在多种工况下有效改善车辆的横摆稳定性,与等转矩分配相比,轮胎附着利用率得到有效减小,控制效果更加显著。  相似文献   

14.
为了提高车辆转向控制系统输出精度,改善车辆行驶的稳定性,提出了改进人工神经网络PID控制器.创建车辆平面参考模型简图,建立车辆运动参数的数学关系式,推导出车辆横摆角速度的动力学方程式.在传统PID控制器基础上,结合人工神经网络模型,采用改进粒子群算法对人工神经网络PID控制器进行在线优化,动态调整PID控制器参数,实现车辆转向控制系统的最优输出,在不同工况路面进行车辆横摆角速度仿真实验.结果表明:采用改进人工神经网络PID控制器,不仅可以提高车辆转向控制系统的响应速度,而且输出的摆动角速度误差较小.车辆在复杂工况路面行驶,其转向系统采用改进人工神经网络PID控制器,有利于提高车辆行驶的稳定性.  相似文献   

15.
研究通过对线控转向系统进行主动控制,可靠并准确地得到期望的前轮转角。基于建立的线控转向系统数学模型,使用非线性自回归模型确定其系统参数,设计内模控制器跟踪车辆的期望运动状态。通过开环和闭环试验,对控制器在典型的驾驶工况下的有效性进行了验证。通过与PID控制器的结果对比,证明所设计的内模控制器能提供更好的控制性能。为减少驾驶员的操纵负担并确保车辆在不同行驶条件下的稳定性,根据不同工况下的测试结果提出基于增益不变的变角传动比控制策略,并设计了滑模控制器跟踪期望横摆角以实现主动转向。通过对内模和滑模控制器的联合仿真结果表明,所设计的控制器可实现期望横摆角度的精确跟踪,显著提高车辆的操纵灵活性和稳定性。  相似文献   

16.
提出一种基于粒子群优化与径向基(Radical basis function,RBF)神经网络优化算法的商用车横向稳定性优化控制策略,采用上、下双层控制模式,上层控制器以横摆角速度与质心侧偏角为控制目标,依据车辆行驶工况的反馈信息,利用粒子群优化(Particle swarm optimization,PSO)算法对模糊控制器中的比例因子参数实施动态优化,实现对前轮附加转角和横摆力矩的控制。下层控制器采用RBF神经网络优化制动力分配,通过对横摆角速度偏差的自适应学习,结合滑移率控制器实时优化分配左、右前轮的制动器制动力并修正前轮转角。基于搭建的Truck Sim与Matlab/Simulink联合仿真环境,选取典型试验工况进行车辆横向稳定性仿真分析。研究结果表明,与传统的电子稳定控制系统(Electronic stability control,ESC)控制策略相比较,优化控制后车辆的横摆角速度、质心侧偏角以及侧向加速度等动态响应指标均满足控制要求,并且实际行驶轨迹与目标规划路径之间具有良好的跟随性,有效改善了低附着路面行驶条件下商用车的横向稳定性。  相似文献   

17.
为了协调智能驾驶车辆的轨迹跟踪精确性和稳定性,提高控制算法对不同工况的自适应能力,提出基于Takagi-Sugeno模糊变权重模型预测控制(Takagi-Sugeno fuzzy model predictive control,T-S FMPC)的轨迹跟踪控制策略。以前轮转角为控制变量建立MPC控制,并以实时横向位移误差和横摆角误差为模糊输入,通过T-S模糊控制在线优化MPC目标函数权重,协调权重矩阵对轨迹跟踪精确性和稳定性的影响。基于Carsim建立分布式驱动电动汽车的整车动力学模型,基于Simulink建立控制策略,通过双移线工况仿真及实车试验,验证了所提控制策略的有效性。仿真结果表明,相比于传统MPC控制,所提出的T-S模糊变权重MPC控制可降低横向位移误差达62.24%,有效提高轨迹跟踪精度;并且可使前轮转角波动减小37.46%、横摆角误差减小84.19%,显著增强轨迹跟踪稳定性;试验结果表明,在20 km/h、沥青路面双移线工况下,横向位移误差在0.12 m以内,横摆角误差在1°以内,且前轮转角控制曲线平滑,说明所提算法具有良好的控制效果和实用性。  相似文献   

18.
研究分布式驱动电动汽车操纵稳定性控制问题。基于模型跟踪控制的思想,采用分层控制结构设计控制器。控制器包含参考模型、运动跟踪控制器、控制分配器、参数估计模块。采用带质心侧偏角约束的2自由度车辆模型作为参考模型,设计非线性滑模变结构运动跟踪控制器;针对过驱动系统引入控制分配理论,采用二次规划法设计控制分配器,利用有效集方法进行求解;设计相关动力学参量的估计模块。利用实车平台对稳定性策略进行实车验证,双移线试验与蛇形绕桩试验结果表明:滑模变结构控制器具有较好的收敛性,控制分配模块可以实现四轮纵向力的优化分配,车辆横摆角速度能够较好地跟踪参考横摆角速度。相比无控制车辆,提高平均通过车速,提高平均峰值横摆角速度响应,增加车辆在极限工况下的稳定性。  相似文献   

19.
提出一种基于车轮转矩优化分配的层次化车辆稳定性控制方法,用于分布式驱动电动汽车的操纵稳定性控制。建立八自由度车辆模型,分三层设计控制系统,上层控制器以质心侧偏角和横摆角速度为状态变量,采用积分二自由度控制模型,引入虚拟控制解耦两控制变量,计算车辆稳定的等效横摆力矩;中层采用线性二次型方法,优化分配前后轮转向角和轮胎纵向力;下层控制器设计滑模滑移率控制器,完成定滑移率下的车轮转矩再分配。仿真结果表明,该控制系统在高速极限工况下能充分利用轮胎的附着潜力,实现车轮转矩的协调分配,提高车辆的操纵稳定性;当执行机构出现故障时,系统能有效重构并实现控制量再分配,提高车辆的安全性。  相似文献   

20.
为了改善汽车的操纵稳定性,获得理想的转向特性,利用四轮独立驱动、四轮独立转向电动汽车转向灵活的优势,提出一种基于后轮主动转向技术的变传动比控制策略。综合考虑了汽车在低速行驶时的操纵响应性能,及高速行驶时的行驶稳定性能,通过变传动比设计期望横摆角速度;采用LQR最优控制方法设计汽车的后轮主动转向控制器,实现对期望横摆角速度的跟踪。仿真结果表明,所提出的控制策略不但提高了汽车在低速下的操纵响应,还增强了汽车在高速行驶时的稳定性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号