首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scientific applications require large computing power, traditionally exceeding the amount that is available within the premises of a single institution. Therefore, clouds can be used to provide extra resources whenever required. For this vision to be achieved, however, requires both policies defining when and how cloud resources are allocated to applications and a platform implementing not only these policies but also the whole software stack supporting management of applications and resources. Aneka is a cloud application platform capable of provisioning resources obtained from a variety of sources, including private and public clouds, clusters, grids, and desktops grids. In this paper, we present Aneka’s deadline-driven provisioning mechanism, which is responsible for supporting quality of service (QoS)-aware execution of scientific applications in hybrid clouds composed of resources obtained from a variety of sources. Experimental results evaluating such a mechanism show that Aneka is able to efficiently allocate resources from different sources in order to reduce application execution times.  相似文献   

2.
Mobile edge cloud computing has been a promising computing paradigm, where mobile users could offload their application workloads to low‐latency local edge cloud resources. However, compared with remote public cloud resources, conventional local edge cloud resources are limited in computation capacity, especially when serve large number of mobile applications. To deal with this problem, we present a hierarchical edge cloud architecture to integrate the local edge clouds and public clouds so as to improve the performance and scalability of scheduling problem for mobile applications. Besides, to achieve a trade‐off between the cost and system delay, a fault‐tolerant dynamic resource scheduling method is proposed to address the scheduling problem in mobile edge cloud computing. The optimization problem could be formulated to minimize the application cost with the user‐defined deadline satisfied. Specifically, firstly, a game‐theoretic scheduling mechanism is adopted for resource provisioning and scheduling for multiprovider mobile applications. Then, a mobility‐aware dynamic scheduling strategy is presented to update the scheduling with the consideration of mobility of mobile users. Moreover, a failure recovery mechanism is proposed to deal with the uncertainties during the execution of mobile applications. Finally, experiments are designed and conducted to validate the effectiveness of our proposal. The experimental results show that our method could achieve a trade‐off between the cost and system delay.  相似文献   

3.
Personal cloud storage provides users with convenient data access services. Service providers build distributed storage systems by utilizing cloud resources with distributed hash table (DHT), so as to enhance system scalability. Efficient resource provisioning could not only guarantee service performance, but help providers to save cost. However, the interactions among servers in a DHT‐based cloud storage system depend on the routing process, which makes its execution logic more complicated than traditional multi‐tier applications. In addition, production data centers often comprise heterogeneous machines with different capacities. Few studies have fully considered the heterogeneity of cloud resources, which brings new challenges to resource provisioning. To address these challenges, this paper presents a novel resource provisioning model for service providers. The model utilizes queuing network for analysis of both service performance and cost estimation. Then, the problem is defined as a cost optimization with performance constraints. We propose a cost‐efficient algorithm to decompose the original problem into a sub‐optimization one. Furthermore, we implement a prototype system on top of an infrastructure platform built with OpenStack. It has been deployed in our campus network. Based on real‐world traces collected from our system and Dropbox, we validate the efficiency of our proposed algorithms by extensive experiments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
郭怡  茅苏 《微机发展》2012,(2):80-84
云计算资源管理系统是用于接收来自云计算用户的资源请求,并且把特定的资源封装为服务提供给资源请求者。在云计算环境下,如何为资源请求者选择合适的资源是一个值得研究的课题。文中通过对云计算下现有的资源提供策略的分析,同时根据不同云提供者提供的计算资源的成本不同的特点,综合考虑资源的计算能力、可靠性和单位成本三点因素,提出了云计算下基于CRP算法的资源提供策略。这种资源提供策略既能提供满足用户资源请求的服务,也能降低云服务提供者的运营成本,从而获得更大收益。  相似文献   

5.
6.
Use of virtualization in Infrastructure as a Service (IaaS) environments provides benefits to both users and providers: users can make use of resources following a pay-per-use model and negotiate performance guarantees, whereas providers can provide quick, scalable and hardware-fault tolerant service and also utilize resources efficiently and economically. With increased acceptance of virtualization-based systems, an important issue is that of virtual machine migration-enabled consolidation and dynamic resource provisioning. Effective resource provisioning can result in higher gains for users and providers alike. Most hosted applications (for example, web services) are multi-tiered and can benefit from their various tiers being hosted on different virtual machines. These mutually communicating virtual machines may get colocated on the same physical machine or placed on different machines, as part of consolidation and flexible provisioning strategies. In this work, we argue the need for network affinity-awareness in resource provisioning for virtual machines. First, we empirically quantify the change in CPU resource usage due to colocation or dispersion of communicating virtual machines for both Xen and KVM virtualization technologies. Next, we build models based on these empirical measurements to predict the change in CPU utilization when transitioning between colocated and dispersed placements. Due to the modeling process being independent of virtualization technology and specific applications, the resultant model is generic and application-agnostic. Via extensive experimentation, we evaluate the applicability of our models for synthetic and benchmark application workloads. We find that the models have high prediction accuracy — maximum prediction error within 2% absolute CPU usage.  相似文献   

7.
Cloud computing allows dynamic resource scaling for enterprise online transaction systems, one of the key characteristics that differentiates the cloud from the traditional computing paradigm. However, initializing a new virtual instance in a cloud is not instantaneous; cloud hosting platforms introduce several minutes delay in the hardware resource allocation. In this paper, we develop prediction-based resource measurement and provisioning strategies using Neural Network and Linear Regression to satisfy upcoming resource demands.Experimental results demonstrate that the proposed technique offers more adaptive resource management for applications hosted in the cloud environment, an important mechanism to achieve on-demand resource allocation in the cloud.  相似文献   

8.
Mobile Cloud Computing (MCC) is arising as a prominent research area that is seeking to bring the massive advantages of the cloud to the constrained smartphones. Mobile devices are looking towards cloud-aware techniques, driven by their growing interest to provide ubiquitous PC-like functionality to mobile users. These functionalities mainly target at increasing storage and computational capabilities. Smartphones may integrate those functionalities from different cloud levels, in a service oriented manner within the mobile applications, so that a mobile task can be delegated by direct invocation of a service. However, developing these kind of mobile cloud applications requires to integrate and consider multiple aspects of the clouds, such as resource-intensive processing, programmatically provisioning of resources (Web APIs) and cloud intercommunication. To overcome these issues, we have developed a Mobile Cloud Middleware (MCM) framework, which addresses the issues of interoperability across multiple clouds, asynchronous delegation of mobile tasks and dynamic allocation of cloud infrastructure. MCM also fosters the integration and orchestration of mobile tasks delegated with minimal data transfer. A prototype of MCM is developed and several applications are demonstrated in different domains. To verify the scalability of MCM, load tests are also performed on the hybrid cloud resources. The detailed performance analysis of the middleware framework shows that MCM improves the quality of service for mobiles and helps in maintaining soft-real time responses for mobile cloud applications.  相似文献   

9.
Cloud computing is a recent advancement wherein IT infrastructure and applications are provided as ‘services’ to end‐users under a usage‐based payment model. It can leverage virtualized services even on the fly based on requirements (workload patterns and QoS) varying with time. The application services hosted under Cloud computing model have complex provisioning, composition, configuration, and deployment requirements. Evaluating the performance of Cloud provisioning policies, application workload models, and resources performance models in a repeatable manner under varying system and user configurations and requirements is difficult to achieve. To overcome this challenge, we propose CloudSim: an extensible simulation toolkit that enables modeling and simulation of Cloud computing systems and application provisioning environments. The CloudSim toolkit supports both system and behavior modeling of Cloud system components such as data centers, virtual machines (VMs) and resource provisioning policies. It implements generic application provisioning techniques that can be extended with ease and limited effort. Currently, it supports modeling and simulation of Cloud computing environments consisting of both single and inter‐networked clouds (federation of clouds). Moreover, it exposes custom interfaces for implementing policies and provisioning techniques for allocation of VMs under inter‐networked Cloud computing scenarios. Several researchers from organizations, such as HP Labs in U.S.A., are using CloudSim in their investigation on Cloud resource provisioning and energy‐efficient management of data center resources. The usefulness of CloudSim is demonstrated by a case study involving dynamic provisioning of application services in the hybrid federated clouds environment. The result of this case study proves that the federated Cloud computing model significantly improves the application QoS requirements under fluctuating resource and service demand patterns. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
Mobile edge computing is emerging as a novel ubiquitous computing platform to overcome the limit resources of mobile devices and bandwidth bottleneck of the core network in mobile cloud computing. In mobile edge computing, it is a significant issue for cost reduction and QoS improvement to place edge clouds at the edge network as a small data center to serve users. In this paper, we study the edge cloud placement problem, which is to place the edge clouds at the candidate locations and allocate the mobile users to the edge clouds. Specifically, we formulate it as a multiobjective optimization problem with objective to balance the workload between edge clouds and minimize the service communication delay of mobile users. To this end, we propose an approximate approach that adopted the K-means and mixed-integer quadratic programming. Furthermore, we conduct experiments based on Shanghai Telecom's base station data set and compare our approach with other representative approaches. The results show that our approach performs better to some extent in terms of workload balance and communication delay and validate the proposed approach.  相似文献   

11.
To meet the challenges of consistent performance, low communication latency, and a high degree of user mobility, cloud and Telecom infrastructure vendors and operators foresee a Mobile Cloud Network that incorporates public cloud infrastructures with cloud augmented Telecom nodes in forthcoming mobile access networks. A Mobile Cloud Network is composed of distributed cost- and capacity-heterogeneous resources that host applications that in turn are subject to a spatially and quantitatively rapidly changing demand. Such an infrastructure requires a holistic management approach that ensures that the resident applications’ performance requirements are met while sustainably supported by the underlying infrastructure. The contribution of this paper is three-fold. Firstly, this paper contributes with a model that captures the cost- and capacity-heterogeneity of a Mobile Cloud Network infrastructure. The model bridges the Mobile Edge Computing and Distributed Cloud paradigms by modelling multiple tiers of resources across the network and serves not just mobile devices but any client beyond and within the network. A set of resource management challenges is presented based on this model. Secondly, an algorithm that holistically and optimally solves these challenges is proposed. The algorithm is formulated as an application placement method that incorporates aspects of network link capacity, desired user latency and user mobility, as well as data centre resource utilisation and server provisioning costs. Thirdly, to address scalability, a tractable locally optimal algorithm is presented. The evaluation demonstrates that the placement algorithm significantly improves latency, resource utilisation skewness while minimising the operational cost of the system. Additionally, the proposed model and evaluation method demonstrate the viability of dynamic resource management of the Mobile Cloud Network and the need for accommodating rapidly mobile demand in a holistic manner.  相似文献   

12.
Managing resources, context and data in mobile clouds is a challenging task. Specific aspects of spontaneity, large interaction space and dynamic interaction share a metaphorical resemblance to chemistry, chemical reactions and solutions. In this paper, it is argued that by adopting a nature-inspired chemical computing model, a mobile cloud resource management model can be evolved to serve as the basis for novel service modelling and social computing in mobile clouds. To support the argument, a chemistry inspired computation model, Chemistry for Context Awareness (C2A), is extended with Higher Order Chemical Language (HOCL) and High Level Petri-net Graph (HLPNG) formalisms. A scenario and simulation-based evaluation of the proposed model, focusing on two applications dynamic service composition and social communities identification, is also presented in this paper. The formal encoding of C2A validates its assumptions, enabling formal execution and analysis of context-based interactions that are derived using C2A principles.  相似文献   

13.
Cloud computing has been widely adopted by enterprises because of its on-demand and elastic resource usage paradigm. Currently most cloud applications are running on one single cloud. However, more and more applications demand to run across several clouds to satisfy the requirements like best cost efficiency, avoidance of vender lock-in, and geolocation sensitive service. JointCloud computing is a new research initiated by Chinese institutes to address the computing issues concerned with multiple clouds. In JointCloud, users’ diverse and dynamic requirements on cloud resources are satisfied by providing users virtual cloud (VC) for special purposes. A virtual cloud for special purposes is in essence a user’s specific cloud working environment having the customized software stacks, configurations and computing resources readily available. This paper first introduces what is JointCloud computing and then describes the design rationales, motivation examples, mechanisms and enabling technologies of VC in JointCloud.  相似文献   

14.
In recent years, the usage of smart mobile applications to facilitate day-to-day activities in various domains for enhancing the quality of human life has increased widely. With rapid developments of smart mobile applications, the edge computing paradigm has emerged as a distributed computing solution to support serving these applications closer to mobile devices. Since the submitted workloads to the smart mobile applications changes over the time, decision making about offloading and edge server provisioning to handle the dynamic workloads of mobile applications is one of the challenging issues into the resource management scope. In this work, we utilized learning automata as a decision-maker to offload the incoming dynamic workloads into the edge or cloud servers. In addition, we propose an edge server provisioning approach using long short-term memory model to estimate the future workload and reinforcement learning technique to make an appropriate scaling decision. The simulation results obtained under real and synthetic workloads demonstrate that the proposed solution increases the CPU utilization and reduces the execution time and energy consumption, compared with the other algorithms.  相似文献   

15.

With the recent advancements in Internet-based computing models, the usage of cloud-based applications to facilitate daily activities is significantly increasing and is expected to grow further. Since the submitted workloads by users to use the cloud-based applications are different in terms of quality of service (QoS) metrics, it requires the analysis and identification of these heterogeneous cloud workloads to provide an efficient resource provisioning solution as one of the challenging issues to be addressed. In this study, we present an efficient resource provisioning solution using metaheuristic-based clustering mechanism to analyze cloud workloads. The proposed workload clustering approach used a combination of the genetic algorithm and fuzzy C-means technique to find similar clusters according to the user’s QoS requirements. Then, we used a gray wolf optimizer technique to make an appropriate scaling decision to provide the cloud resources for serving of cloud workloads. Besides, we design an extended framework to show interaction between users, cloud providers, and resource provisioning broker in the workload clustering process. The simulation results obtained under real workloads indicate that the proposed approach is efficient in terms of CPU utilization, elasticity, and the response time compared with the other approaches.

  相似文献   

16.
Fog and Cloud computing are ubiquitous computing paradigms based on the concepts of utility and grid computing. Cloud service providers permit flexible and dynamic access to virtualized computing resources on pay-per-use basis to the end users. The users having mobile device will like to process maximum number of applications locally by defining fog layer to provide infrastructure for storage and processing of applications. In case demands for resources are not being satisfied by fog layer of mobile device then job is transferred to cloud for processing. Due to large number of jobs and limited resources, fog is prone to deadlock at very large scale. Therefore, Quality of Service (QoS) and reliability are important aspects for heterogeneous fog and cloud framework. In this paper, Social Network Analysis (SNA) technique is used to detect deadlock for resources in fog layer of mobile device. A new concept of free space fog is proposed which helps to remove deadlock by collecting available free resource from all allocated jobs. A set of rules are proposed for a deadlock manager to increase the utilization of resources in fog layer and decrease the response time of request in case deadlock is detected by the system. Two different clouds (public cloud and virtual private cloud) apart from fog layer and free space fog are used to manage deadlock effectively. Selection among them is being done by assigning priorities to the requests and providing resources accordingly from fog and cloud. Therefore, QoS as well as reliability to users can be provided using proposed framework. Cloudsim is used to evaluate resource utilization using Resource Pool Manager (RPM). The results show the effectiveness of proposed technique.  相似文献   

17.
The paper addresses the integration of hybrid cloud with mobile applications. The challenge about hybrid mobile cloud resource provisioning is the trade-offs between energy consumption, performance provided to users and how resources, such as processing power and network, are being utilized. The proposed elastic hybrid mobile cloud resource provisioning model is jointly optimized to improve mobile user experience within the constraints of available resources and user QoS requirement. The paper presents the system utility of hybrid cloud system involving local cloud and public cloud infrastructure. From the perspectives of both mobile applications and cloud providers, the proposed system utility is optimized to improve the performance of mobile applications and the utilization of cloud resources. The proposed elastic hybrid mobile cloud resource provisioning algorithm includes two sub-algorithms. To evaluate and validate performance of the proposed algorithm, a series of experiments are conducted. The comparison results and analyses are discussed. The experimental results show the improvement to previous works.  相似文献   

18.
Hybrid Cloud computing is receiving increasing attention in recent days. In order to realize the full potential of the hybrid Cloud platform, an architectural framework for efficiently coupling public and private Clouds is necessary. As resource failures due to the increasing functionality and complexity of hybrid Cloud computing are inevitable, a failure-aware resource provisioning algorithm that is capable of attending to the end-users quality of service (QoS) requirements is paramount. In this paper, we propose a scalable hybrid Cloud infrastructure as well as resource provisioning policies to assure QoS targets of the users. The proposed policies take into account the workload model and the failure correlations to redirect users’ requests to the appropriate Cloud providers. Using real failure traces and a workload model, we evaluate the proposed resource provisioning policies to demonstrate their performance, cost as well as performance–cost efficiency. Simulation results reveal that in a realistic working condition while adopting user estimates for the requests in the provisioning policies, we are able to improve the users’ QoS about 32% in terms of deadline violation rate and 57% in terms of slowdown with a limited cost on a public Cloud.  相似文献   

19.
云计算的应用目标并不仅局限于PC,随着移动互联网的蓬勃发展,基于手机等移动终端的云服务已成为IT行业炙手可热的新业务发展模式。本文基于Openmobster搭建移动云计算环境,并利用Android智能手机作为终端来访问云端服务器资源,以数据传输的事务处理为应用背景,采用c/s模式和B/S模式相结合的方式,建立了云服务下移动智能终端信息采集和处理的基础架构,并根据此架构初步实现了追踪定位的功能。该方法通过无线网络连接,利用服务器端与手机客户端的即时通信,实现了为Android智能手机提供云推送和云同步的服务。  相似文献   

20.
Mobile clouds are used by many people via a network service to share the computing resources, because of the unification management of data and low cost. In case of the mobile device, the network access devices are frequently used by many software installed via the installer software. Considering the effect of the debugging process on mobile software in the development of a method of reliability assessment for the mobile clouds, it is necessary to grasp the situation of installer software, the network traffic, the installed software, etc.In this paper, we develop an integrated method of reliability assessment considering the software failure and network traffic based on a hazard rate model and neural network for the mobile clouds. In particular, we develop the AIR application for reliability analysis based on the proposed method. Then, we show the performance examples of the developed AIR application to analyze the method of software reliability assessment for the mobile clouds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号