首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
通过显微硬度测试、常规拉伸性能测试、扫描电镜和透射电镜等观察手段研究Cu含量对含Sc铝锂合金显微组织和力学性能的影响。结果表明:在Sc元素含量基本不变的情况下,Cu含量为4.2%(质量分数)的合金在均匀化过程中会形成W(Al Cu Sc)相,且该相在固溶时也不会完全溶解到α(Al)。在相同Sc含量条件下,随着α(Al)中Cu含量的下降,w(Cu)/w(Sc)变小,均匀化后形成的W相数量会明显降低,直至消失。由于W相对合金力学性能不利,其数量的减少可以增加合金中有效固溶Cu原子的数量,从而提高合金性能,W相的形成抑制合金中Al3(Sc,Zr)粒子的析出形成。  相似文献   

2.
采用布氏硬度计、金相显微镜、扫描电镜(SEM)和透射电镜(TEM)研究了微量Sc、Zr、Ti以及Mg含量对Al-Mg合金的显微组织与布氏硬度的影响。结果表明,单独添加Sc、Zr元素的合金与未添加的Al-Mg合金的铸态组织相比,合金的晶粒组织得到了一定的细化,复合添加Sc、Zr、Ti3种元素的合金铸态组织的晶粒细化程度更为明显。同时在Sc、Zr、Ti相同含量下,Mg元素的增加也能进一步细化合金的晶粒组织,这是由于Mg元素固溶强化的结果,使得合金的布氏硬度提高。对Al-10Mg-Sc-Zr-Ti合金进行均匀化退火处理后,合金的硬度较铸态组织提高了10%,这是Al3(Sc1-xZrx)、Al3(Sc1-xTix)及Al3(Sc1-x-yZrxTiy)大量沉淀相二次析出,弥散度增大、分布更加均匀的结果。  相似文献   

3.
采用金相显微镜、透射电镜、扫描电镜及拉伸性能在测试研究0.11%Ce(质量分数)添加对一种Al-Cu-Li系高强铝锂合金薄板T8态时效(5%冷轧预变形+155℃时效)组织和力学性能的影响。结果表明:0.11%Ce添加明显降低合金强度,但伸长率略有增加。微量Ce添加可细化铸态晶粒组织及固溶再结晶晶粒组织;而且微量Ce添加未改变铝锂合金中时效析出相的种类,主要强化相仍然为T1相(Al_2CuLi)及θ′相(Al_2Cu),但其数量减少。铝锂合金中添加微量Ce,凝固时可形成含Ce且富Cu的Al_8Cu_4Ce相粒子,在后续均匀化及固溶处理时均难以完全溶解,导致固溶基体中的Cu含量降低,时效时含Cu析出相T1相及θ′相含量减少,合金强度降低。  相似文献   

4.
为开发新型超高强铝锂合金,研究T8态时效处理的Mg、Ag、Zn复合微合金化Al-(3.2~3.8)Cu-(1.0~1.4)Li合金的显微组织及力学性能。结果表明,Li含量较低(1.0%)时,通过增加Cu含量来提高铝锂合金强度的作用有限,而同时增加Cu和Li含量则有利于其强度的明显提高。铝锂合金的主要强化相为大量细小弥散的T1(Al_2CuLi)相;同时,合金中还析出少量θ'(Al_2Cu)相及δ(Al_3Li)相,而且随时效过程的进行,其密度降低,甚至消失。Li含量较高时有利于δ'相及θ'相的形成,并可能导致形成少量S'(Al_2CuMg)相。另外,采用非固溶Cu、Li原子的总摩尔分数及其比例分析Cu、Li含量变化对合金强化效果及显微组织的影响。为获得超高强度的铝锂合金,一方面需提高Cu、Li原子的总摩尔分数,另一方面也应维持其较高比例。  相似文献   

5.
研究了Ce添加量分别为0.09%及0.23%的Al-4.15Cu-1.25Li-X高强铝锂合金薄板T6态时效(175℃时效)及T8态时效(5%冷轧预变形+155℃时效)时的微观组织和拉伸性能。结果表明,相比T6态时效,T8态时效时铝锂合金强度及伸长率均有所提高。T8态时效时,含0.23%Ce的铝锂合金强度及伸长率均低于Ce含量为0.09%的铝锂合金。Ce含量增加未改变铝锂合金中时效析出相的种类,主要强化相仍为T1相(Al_2CuLi)及θ'相(Al_2Cu),但其数量减少。微量Ce的添加可形成含Ce且富Cu的Al_8Cu_4Ce相粒子,这些粒子在均匀化及固溶处理时均难以完全溶解。Ce含量增加,导致固溶基体中Cu含量降低,时效时含Cu析出相T1相及θ'相含量减少,铝锂合金强度降低。  相似文献   

6.
通过金相显微分析(OM)、扫描电镜(SEM)、X射线衍射(XRD)、差示扫描量热法(DSC)、能谱分析(EDS)和电子探针显微分析(EPMA),研究了不同Li含量对高Cu铝锂合金铸态组织和均匀化处理的影响。结果表明:铸态高Cu铝锂合金的晶界和枝晶间有大量非平衡结晶相存在,主要为富Mg和Ag的Al-Cu相、TB(Al7Cu4Li)相和θ(Al2Cu)相;Li含量对铸锭枝晶间距和第二相种类有明显的影响,当合金中Li含量较高时,枝晶间距较小,TB(Al7Cu4Li)相的占比较大;当合金中Li含量较低时,枝晶间距较大,θ(Al2Cu)相的占比较大。θ(Al2Cu)相占比越大,均匀化处理需要的时间越长,低Li合金、中Li合金和高Li合金适宜的均匀化制度分别为(470℃,16 h)+(500℃,40 h)、(470℃,16 h)+(500℃,24 h)和(470℃,16 h)+(500℃,8 h)。  相似文献   

7.
钪对铝锂合金时效硬化行为的影响   总被引:1,自引:0,他引:1  
通过对190℃时效不同时间的含钪和不含钪Al—Li合金维氏硬度测量和合金中强化相析出行为的透射电镜观察,研究了钪对铝锂合金时效硬化行为的影响。结果表明,钪可以加快铝锂合金的时效硬化速度,使合金达到峰值时效的时间明显缩短;钪明显抑制了铝锂合金中δ’(Al3Li)相的长大速度,促进了S’(Al2CuMg)的析出,还可形成Al3Sc、Al,Li/Al3Sc和Al3Li/Al3(Sc,Zr)等新的析出相,这些都对铝锂合金的时效硬化行为产生影响。  相似文献   

8.
采用拉伸试验机、光学金相显微镜、透射电镜、扫描电镜等设备研究了添加微量Sc对2195铝锂合金应变时效态的显微组织和拉伸性能的影响。结果表明:微量Sc加入后能生成细小弥散Al3(Sc,Zr)质点,起到抑制再结晶的作用;微量Sc的加入既促使合金晶内析出的T1相分布更弥散均匀,又能使亚晶界和晶界上析出的T1相变得细小,几乎不出现明显的晶界无析出带,因而可在不降低合金强度的前提下有效地改善其塑性。  相似文献   

9.
微量钪对Al-3%Cu合金组织与性能的影响   总被引:8,自引:1,他引:8  
采用硬度、拉伸性能测试、金相组织观察、扫描电镜与能谱分析以及X-射线衍射等方法,研究了微量稀土元素Sc对Al-3%Cu合金组织与性能的影响。结果表明,稀土元素Sc能够强烈地细化Al-Cu合金的晶粒,改善枝晶网胞。微量Sc元素添加到Al-3%Cu合金中,合金的抗拉强度σb和屈服强度σ0.2均有所提高(△σ约为30MPa),对合金的伸长率几乎没有影响;微量Sc元素添加到Al-3%Cu合金中,除部分固溶于Al基体中外,大部分与Al形成对合金起强化作用的Al3Sc共格相,对合金起强化作用,没有发现其他相,包括W(AlCuSc)相生成。  相似文献   

10.
通过在Al-Si合金中加入Sc和Ti元素,经过180℃×2 h或220℃×3 h短时时效热处理来调控铸造Al-Si合金的导热、热膨胀及力学性能。采用光学显微镜(OM)、扫描电镜(SEM)、X射线能谱仪(EDS)等方法观察合金元素及短时时效热处理对铸造Al-Si合金组织演化的影响,并建立微观组织与材料导热系数、热膨胀系数和力学性能之间的关系。结果表明,Si含量的增加能促进粗大初生Si相的析出,弱化Al-Si合金的导热和力学性能,抑制材料的热膨胀程度。Sc或Ti的加入能抑制初生Si相的粗化,细化次生Si相,提升Al-12Si合金的抗拉强度;同时,可以降低材料的热膨胀系数。短时时效热处理可缓解材料元素偏聚现象,显著提升Al-Si合金导热系数,但会降低铸造Al-Si-(Sc, Ti)合金的导热系数。  相似文献   

11.
微量Sc元素对Al-Cu合金组织与性能的影响   总被引:3,自引:0,他引:3  
采用拉伸力学性能测试、扫描电镜与能谱分析等方法,研究了不同量稀土元素Sc对Al-4Cu合金组织与性能的影响。结果表明:稀土元素Sc能够细化Al-4Cu合金的晶粒组织,改善枝晶网胞;当Sc含量小于0.2%时,Al-4Cu合金的抗拉强度δb和屈服强度δ0.2提高约20MPa;当Sc含量为0.3%~0.4%时,抗拉强度δb和屈服强度δ0.2有所降低;当Sc含量为0.5%时,抗拉强度δb和屈服强度δ0.2又有所升高,但低于未添加Sc的Al-4Cu合金;Sc对合金的伸长率几乎没有影响。微量Sc元素添加到Al-4Cu合金中,当Sc含量小于0.2%时,基本上以固溶的形式溶入合金基体中;当Sc含量为0.3%。0.5%时,除部分固溶于Al基体中外,大部分形成起强化作用的Al3Sc相及交互作用AlCuSc相,AlCuSc相是Al-Cu-Sc系合金中的有害相,它使合金的力学性能在一定程度上有所降低。  相似文献   

12.
含钪Al-Cu合金的显微组织   总被引:4,自引:0,他引:4  
采用硬度测试、金相观察、扫描电镜和透射电镜测试及能谱分析的方法,研究了稀土元素Sc含量对Al-4Cu合金组织的影响.结果表明:Sc可显著细化Al-Cu合金的网胞组织,减小枝晶间距,细化合金的晶粒组织,提高合金的显微硬度,提高幅度最约70%;将Sc添加到Al-4Cu合金中,当w(Sc)≈0.3%时,Sc除部分固溶于基体外,大部分与Al形成Al3Sc相,其与基体的共格或半共格界面促进了θ′(CuAl2)的析出;当w(Sc)>0.3%时,Sc除部分固溶和形成Al3Sc外,还与Al、Cu元素作用形成W(AlCuSc)相,降低Cu在α(Al)中的固溶度,减少Al2Cu(θ′)相的生成,从而降低了合金的性能.  相似文献   

13.
利用金相显微镜、差示扫描量热仪,扫描电镜研究了2055铝锂合金的均匀化处理工艺。结果表明:该合金适宜的均匀化处理制度为470℃/8 h+530~535℃/22~24 h。铸态合金树枝晶结构明显,由于Cu元素在晶界的大量偏析,形成了含少量Mg、Zn、Ag、Fe、Mn元素的Al Cu相和Al_2Cu相的共晶相以及AlCuFeMn第二相粒子。铸态合金的过烧温度为522.7℃。一级均匀化过程中,主要是含Cu、Zn、Mg、Ag等元素的低熔点共晶相先行溶解;二级均匀化时主要是Al_2Cu相回溶至基体,残余第二相的粒长在15μm左右,主要是含Cu、Fe和Mn元素的难溶相。第二级均匀化制度与均匀化动力学曲线匹配较好。  相似文献   

14.
采用光学显微镜(OM)、扫描电镜(SEM)、能谱分析(EDX)和差示扫描热分析法(DSC)研究 Al?Cu?Li?Mn?Zr?Ti 合金在均匀化过程中的组织转变。结果表明,实验合金的铸态组织中存在严重的枝晶偏析,晶界处存在大量的共晶相,主要合金元素沿枝晶区域呈周期性分布。合金中的主要未溶相为Al2Cu相,过烧温度为520°C;均匀化过程中,随着温度的升高和时间的延长,晶界处的第二相逐渐溶入基体中,晶界逐渐变得稀疏;合金的均匀化过程可以用一指数方程描述;实验合金适宜的均匀化制度为(510°C,18 h),这与采用均匀化动力学方程计算的结果基本吻合。  相似文献   

15.
研究了Al-Cu-Li-(0.35Mg)-(0.2In)合金的拉伸性能、时效析出相类型及其分布。T6峰时效时,Al-Cu-Li合金的时效析出相为T1(Al2CuLi)和?? (Al2Cu)相。添加0.2%In时,T6态时效早期形成许多方块状的立方相Al5Cu6Li2,且随时间延长其尺寸保持稳定;同时,可促进? ?相析出;相应合金的时效响应加速,强度提高。同时添加In和Mg可抑制Al5Cu6Li2相析出,但促进T1相析出。In和Mg的复合微合金化效果小于2050铝锂合金中Ag和Mg的复合微合金化效果,因而In+Mg复合微合金化铝锂合金T6态强度低于Ag+Mg复合微合金化的2050铝锂合金。T8态时效时,时效前预变形产生的位错抑制了In元素单独添加和In+Mg复合添加的微合金化效果。  相似文献   

16.
<正> 铝的最大优点之一是密度小,仅为2700千克/米~3。铝中添加某些合金元素,合金的密度会有所变化。添加重金属元素(如Cu)使合金密度增加,添加轻金属元素(如Mg)使合金密度减小。 铝中添加金属锂,轻化效果非常明显,因为锂的密度只有530千克/米~3。含有1%~2.7%Li的铝合金要  相似文献   

17.
前苏联出于宇航工业和核工业的需要 ,率先在Al -Mg系、Al -Li系及Al -Zn -Mg系中开展了添加微量钪的研究 ,俄罗斯已研制开发了一系列含钪铝合金。除俄罗斯外 ,美国、日本、德国、加拿大等国对含钪铝合金也作过不少研究。但到目前为止 ,尚未见到Cu含量在 4 0 %(质量分数 )的高铜锂比 (Cu/Li≈ 4)的Al -Li合金中加Sc的研究报道 ,原因可能是在含铜量大于1 5 %的合金中 ,加入大于 0 2 0 %Sc ,有可能形成W (Al3 - 8Cu2 - 4 Sc)相 ,不利于有效地发挥添加钪合金化的潜在优势。本文试图研究微量Sc对 2 195铝锂合金的组织和性能的影响。所研…  相似文献   

18.
摘 要:利用金相显微镜,差示扫描量热仪,扫描电镜研究了2055铝锂合金的均匀化处理工艺。研究结果表明:该合金适宜的均匀化处理制度为470℃/8h 530~535℃/22~24h。铸态合金树枝晶结构明显,由于Cu元素在晶界的大量偏析,形成了含少量Mg,Zn,Ag,Fe,Mn元素的AlCu相和Al2Cu 相的共晶相以及AlCuFeMn第二相粒子。铸态合金的过烧温度为522.7℃。一级均匀化过程中,主要是含Cu,Zn,Mg,Ag等元素的低熔点共晶相先行溶解;二级均匀化时主要是Al2Cu相回溶至基体,残余第二相的粒长在15μm左右,主要是含Cu,Fe和Mn元素的难溶相。第二级均匀化制度与均匀化动力学曲线匹配较好。  相似文献   

19.
对Al-Cu-Li铸态合金进行单级和双级均匀化处理,通过光学显微镜(OM)、扫描电镜(SEM)、能谱分析(EDS)、X衍射(XRD)和差热分析(DSC)研究合金元素分布和微观组织演化。结果表明:Al-Cu-Li合金铸态组织存在严重枝晶偏析,由晶内到晶界Cu元素分布十分不均匀,Mg、Zn、Mn和Ag变化不明显。晶界处存在大量的非平衡共晶相,主要包括Al_2Cu、含有少量Mg元素的Al_2Cu相,以及Al_2Cu Mg相。经双级均匀化(495℃/24 h+515℃/_24 h)处理后,大部分非平衡共晶相和部分第二相(Al_2Cu Mg和Al_2Cu Li)溶解到合金基体,但仍有部分富-Fe和富-Mn相残留在晶界不能回溶。Al_2Cu Mg相的熔点低于Al_2Cu相,两者分别在495和515℃先后溶解。通过均匀化动力学分析,确定Al-Cu-Li铝锂合金最佳的均匀化制度为495℃/24 h+515℃/24 h,该双级均匀化制度与动力学分析结果一致。  相似文献   

20.
<正>加拿大铝业公司法国雷纳技术中心(Alcan Rhenalu)发明一种具有高的断裂韧度的Al-Cu-Li合金,生产薄板与中板(light-gauge plate),在美国取得了专利,专利号US 7744 704 B2。合金成分(质量分数/%):2.7~3.4Cu,0.8~1.4Li,0.1~0.8Ag,0.2~0.6Mg,下列元素至少有一种:0.02~1.3Zr、0.05~0.8Mn、0.05~0.2Cr、0.05~0.3Sc、0.05~0.5Hf、0.05~0.15Ti,其余为铝及不可避免的杂质;铜与锂含量应保持如下关系:(Cu+5/3Li)5.2。铸锭在490℃~530℃均匀化退火5 h~60 h。将锭轧成最终厚度为0.8 mm~12 mm的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号