共查询到20条相似文献,搜索用时 0 毫秒
1.
自适应和声粒子群搜索算法 总被引:9,自引:0,他引:9
针对现有改进和声搜索算法(IHS)的不足,提出一种自适应和声粒子群搜索算法(AHSPSO).首先对和声记忆库中每个变量用粒子群算法寻优,再利用自适应参数PAR和bw调节来提高对多维问题的搜索效率.利用5个标准的优化算法测试函数对AHSPSO算法进行测试,并与IHS,PSO和SA算法进行对比,仿真结果表明了AHSPSO算法具有较强的精确寻优和跳出局部最优的能力. 相似文献
2.
针对粒子群优化算法易早熟和求解精度差等问题,提出一种融合局部搜索与二次插值的粒子群优化算法.首先由标准粒子群优化算法产生N个位置,从这N个位置中随机选取3个不同位置,进行二次插值操作产生每个粒子的新位置,更新每个粒子的历史最好位置的全局最好位置;然后经过一定迭代步后,利用Hooke-Jeeves局部搜索技术,对得到的当前全局最优位置进行局部搜索;最后,对9个典型测试函数进行仿真实验并与其它算法进行比较,数值结果表明所提出的算法具有较快的收敛速度和较强的全局搜索能力. 相似文献
3.
自适应中心引力优化算法 总被引:3,自引:1,他引:2
针对函数全局优化问题,提出了一种自适应中心引力算法,以平衡全局探测能力和局部搜索能力。首先定义粒子的适应值函数,然后根据与平均适应值的比较,更新粒子运动时间,并引进交叉操作更新当前粒子位置,从而提高算法的收敛速度。最后选择8个典型测试函数进行测试,并与中心引力优化算法和其他粒子群优化算法进行比较。结果表明,该算法得到的结果十分精确,鲁棒性强,优于其他算法。 相似文献
4.
5.
This paper presents an efficient hybrid particle swarm optimization algorithm to solve dynamic economic dispatch problems with valve-point effects, by integrating an improved bare-bones particle swarm optimization (BBPSO) with a local searcher called directionally chaotic search (DCS). The improved BBPSO is designed as a basic level search, which can give a good direction to optimal regions, while DCS is used as a fine-tuning operator to locate optimal solution. And an adaptive disturbance factor and a new genetic operator are also incorporated into the improved BBPSO to enhance its search capability. Moreover, a heuristic handing mechanism for constraints is introduced to modify infeasible particles. Finally, the proposed algorithm is applied to the 5-, 10-, 30-unit-test power systems and several numerical functions, and a comparative study is carried out with other existing methods. Results clarify the significance of the proposed algorithm and verify its performance. 相似文献
6.
7.
微粒群算法中惯性权重的调整策略 总被引:8,自引:0,他引:8
惯性权重是微粒群算法中的关键参数,可以平衡算法全局搜索能力和局部搜索能力的关系,提高算法的收敛性能。该文分析了惯性权重对微粒群算法收敛性能的影响,为了进一步提高算法的全局最优性,提出了几种对惯性权重的调整策略。通过对4个测试函数的仿真实验,验证了这些策略的可行性,表明这些策略能够简便高效地提高算法的全局收敛性和收敛速度。 相似文献
8.
9.
Particle swarm-based olfactory guided search 总被引:3,自引:0,他引:3
This article presents a new algorithm for searching odour sources across large search spaces with groups of mobile robots.
The proposed algorithm is inspired in the particle swarm optimization (PSO) method. In this method, the search space is sampled
by dynamic particles that use their knowledge about the previous sampled space and share this knowledge with other neighbour
searching particles allowing the emergence of efficient local searching behaviours. In this case, chemical searching cues
about the potential existence of upwind odour sources are exchanged. By default, the agents tend to avoid each other, leading
to the emergence of exploration behaviours when no chemical cue exists in the neighbourhood. This behaviour improves the global
searching performance.
The article explains the relevance of searching odour sources with autonomous agents and identifies the main difficulties
for solving this problem. A major difficulty is related with the chaotic nature of the odour transport in the atmosphere due
to turbulent phenomena. The characteristics of this problem are described in detail and a simulation framework for testing
and analysing different odour searching algorithms was constructed. The proposed PSO-based searching algorithm and modified
versions of gradient-based searching and biased random walk-based searching strategies were tested in different environmental
conditions and the results, showing the effectiveness of the proposed strategy, were analysed and discussed.
Lino Marques is an auxiliary professor in the Department of Electrical Engineering, University of Coimbra, and he is a researcher in the
Institute for Systems and Robotics (ISR-UC). He received his Licenciatura, MSc. and Ph.D. degrees in Electrical Engineering
from the University of Coimbra, Portugal. His main research interests include embedded systems, mechatronics, robotics for
risky environments, optical range sensors, artificial olfaction systems and mobile robot olfaction.
Urbano Nunes is an associate professor of the University of Coimbra and a researcher of the Institute for Systems and Robotics (ISR-UC),
where he has been involved in research and teaching since 1983. He received his Licenciatura and Ph.D. degrees in Electrical
Engineering from the University of Coimbra, Portugal, in 1983 and 1995, respectively. He is the coordinator of the Mechatronics
Laboratory of ISR-UC, and had been responsible for several funded projects in the areas of mobile robotics and intelligent
vehicles. His research interests include mobile robotics, intelligent vehicles, and mechatronics. Professor Urbano Nunes serves
on the Editorial Board of the Journal on Machine Intelligence and Robotic Control, and currently he is co-chair of the IEEE
RAS TC on Intelligent Transportation Systems. Currently he is the Program Chair of the IEEE ITSC2006. He has served as General
Co-Chair of ICAR 2003 and as member of several program committees of international conferences.
Aníbal T. De Almeida graduated in Electrical Engineering, University of Porto, 1972, and received a Ph.D. in Electrical Engineering, from Imperial
College, University of London, 1977. Currently he is a Professor in the Department of Electrical Engineering, University of
Coimbra, and he is the Director of the Institute of Systems and Robotics since 1993. Professor De Almeida is a consultant
of the European Commission Framework Programmes. He is the co-author of five books and more than one hundred papers in international
journals, meetings and conferences. He has coordinated several European and national research projects. 相似文献
10.
11.
An improved vector particle swarm optimization for constrained optimization problems 总被引:1,自引:0,他引:1
Increasing attention is being paid to solve constrained optimization problems (COP) frequently encountered in real-world applications. In this paper, an improved vector particle swarm optimization (IVPSO) algorithm is proposed to solve COPs. The constraint-handling technique is based on the simple constraint-preserving method. Velocity and position of each particle, as well as the corresponding changes, are all expressed as vectors in order to present the optimization procedure in a more intuitively comprehensible manner. The NVPSO algorithm [30], which uses one-dimensional search approaches to find a new feasible position on the flying trajectory of the particle when it escapes from the feasible region, has been proposed to solve COP. Experimental results showed that searching only on the flying trajectory for a feasible position influenced the diversity of the swarm and thus reduced the global search capability of the NVPSO algorithm. In order to avoid neglecting any worthy position in the feasible region and improve the optimization efficiency, a multi-dimensional search algorithm is proposed to search within a local region for a new feasible position. The local region is composed of all dimensions of the escaped particle’s parent and the current positions. Obviously, the flying trajectory of the particle is also included in this local region. The new position is not only present in the feasible region but also has a better fitness value in this local region. The performance of IVPSO is tested on 13 well-known benchmark functions. Experimental results prove that the proposed IVPSO algorithm is simple, competitive and stable. 相似文献
12.
Ying WangJianzhong Zhou Chao ZhouYongqiang Wang Hui QinYoulin Lu 《Expert systems with applications》2012,39(3):2288-2295
This paper presents an improved self-adaptive particle swarm optimization algorithm (ISAPSO) to solve hydrothermal scheduling (HS) problem. To overcome the premature convergence of particle swarm optimization (PSO), the evolution direction of each particle is redirected dynamically by adjusting the two sensitive parameters of PSO in the evolution process. Moreover, a new strategy is proposed to handle the various constraints of HS problem in this paper. The results solved by this proposed strategy can strictly satisfy the constraints of HS problem. Finally, the feasibility and effectiveness of proposed ISAPSO algorithm is validated by a test system containing four hydro plants and an equivalent thermal plant. The results demonstrate that the proposed ISAPSO can get a better solution in both robustness and accuracy while compared with the other methods reported in this literature. 相似文献
13.
将处理约束问题的乘子法与改进的粒子群算法相结合,提出了一种求解非线性约束问题的混合粒子群算法。此算法兼顾了粒子群优化算法和乘子法的优点,对迭代过程中出现的不可行粒子,利用乘子法处理后产生可行粒子,然后用改进的粒子群算法来搜索其最优解,这样不仅减小了粒子群算法在寻优过程中陷入局部极小的概率,而且提高了搜索精度。数值试验结果表明提出的新算法具有搜索精度更高、稳定性更强、鲁棒性更好等特点。 相似文献
14.
In this article, a particle swarm optimization algorithm with two differential mutation (PSOTD) is proposed. In PSOTD, a novel structure with two swarms and two layers (bottom layer and top layer) is designed. The top layer consists of all the personal best particles, and the bottom layer consists of all the particles. We divide the particles in the top layer into two sub-swarms. Two different differential mutation operations with two different control parameters are employed in order to breed the particles in the top layer. Thus, one sub-swarm has a good exploration capability, and the other sub-swarm has a good exploitation capability. Obviously, since the top layer leads the bottom layer, the bottom particles achieve a good trade-off between exploration and exploitation. Under the searching structure, PSO enhances the global search capability and search efficiency. In order to test the performance of PSOTD, 44 benchmark functions widely adopted in the literature are used. The experimental results demonstrate that the proposed PSOTD outperforms most of the other tested variants of the PSO in terms of both solution quality and efficiency. 相似文献
15.
In recent years, particle swarm optimization (PSO) has extensively applied in various optimization problems because of its simple structure. Although the PSO may find local optima or exhibit slow convergence speed when solving complex multimodal problems. Also, the algorithm requires setting several parameters, and tuning the parameters is a challenging for some optimization problems. To address these issues, an improved PSO scheme is proposed in this study. The algorithm, called non-parametric particle swarm optimization (NP-PSO) enhances the global exploration and the local exploitation in PSO without tuning any algorithmic parameter. NP-PSO combines local and global topologies with two quadratic interpolation operations to increase the search ability. Nineteen (19) unimodal and multimodal nonlinear benchmark functions are selected to compare the performance of NP-PSO with several well-known PSO algorithms. The experimental results showed that the proposed method considerably enhances the efficiency of PSO algorithm in terms of solution accuracy, convergence speed, global optimality, and algorithm reliability. 相似文献
16.
基于分层多子群的混沌粒子群优化算法 总被引:2,自引:0,他引:2
在分层多子群结构模型的基础上,提出一种混沌粒子群优化算法(HCPSO).该算法对非线性递减的惯性权重进行混沌变异,并采用了混沌搜索方法.在更新全局历史最优位置每一维分量时,选取不同的若干个体作为学习对象,并计算它们的平均位置.混沌搜索区域半径可根据粒子个体最优位置与上述平均位置间的距离自适应地调整.通过对几种典型函数的测试结果表明,该算法具有较好的全局搜索和局部搜索能力,可有效避免早熟收敛问题. 相似文献
17.
为弥补粒子群后期收敛缓慢与早熟的不足,提出了一种局部搜索与改进MOPSO的混合优化算法(H-MOP-SO)。该算法首先采用非均匀变异算子和自适应惯性权重,强化全局搜索能力;继而建立混合算法模型,并利用侧步爬山搜索算法对粒子群作周期性优化,使远离前沿的粒子朝下降方向搜索,而靠近前沿的粒子朝非支配方向搜索,加快粒子群的收敛并改善解集多样性。对标准测试函数的求解表明,该算法比MOPSO, NSGA-II和MOEA/D具有更好的多样性和收敛性。供应商优选问题的求解进一步验证了H-MOPSO的有效性。 相似文献
18.
粒子群优化算法已成为求解多目标优化问题的有效方法之一,而速度更新公式中的惯性、局部和全局3个速度项的系数的动态合理设置是算法优化效率的关键问题。为解决现有算法仅单独设置各速度项系数导致优化效率不高的问题,提出了一种均衡各速度项系数的多目标粒子群优化算法。该方法旨在通过粒子的局部最优和全局最优的信息来引导种群的进化方向,动态调整每一个粒子速度项系数来均衡惯性、局部和全局3个速度项在搜索中的作用,从而更为准确地刻画算法的搜索能力和搜索精度,更好地平衡算法的探究和探索能力,进一步提高粒子群优化算法解决复杂多目标优化问题的效率。在7个标准测试函数上进行实验,并与5种经典的进化算法进行对比,结果表明新算法在综合指标IGD以及多样性评估指标Δ评分上具有更好的收敛速度和分布性,验证了新算法的有效性。 相似文献
19.
粒子群算法(Particle Swarm Optimization,PSO)的性能极大地依赖于其惯性权重参数的选择策略。当在一次迭代中更新粒子速度时,PSO忽略了粒子间的差异,在所有粒子上应用了相同的惯性权重。针对这一问题,提出一种自适应惯性权重的粒子群算法PSO-AIWA,有效合理地均衡PSO的全局搜索和局部搜索能力。根据当前粒子与全局最优粒子间的差异,算法可以通过基于粒子间距的隶属度函数动态调整粒子的惯性权重,使得每次迭代中,粒子可以根据当前状态在每个维度上的搜索空间内选择合适的惯性权重进行状态更新。在6种基准函数下进行了算法的性能测试,结果表明,与随机式惯性权重PSO算法与线性递减惯性权重PSO-LDIW算法相比,该算法可以获得更好的粒子分布和收敛性。 相似文献