共查询到20条相似文献,搜索用时 10 毫秒
1.
Solution of optimal power flow (OPF) problem aims to optimize a selected objective function such as fuel cost, active power loss, total voltage deviation (TVD) etc. via optimal adjustment of the power system control variables while at the same time satisfying various equality and inequality constraints. In the present work, a particle swarm optimization with an aging leader and challengers (ALC-PSO) is applied for the solution of the OPF problem of power systems. The proposed approach is examined and tested on modified IEEE 30-bus and IEEE 118-bus test power system with different objectives that reflect minimization of fuel cost or active power loss or TVD. The simulation results demonstrate the effectiveness of the proposed approach compared with other evolutionary optimization techniques surfaced in recent state-of-the-art literature. Statistical analysis, presented in this paper, indicates the robustness of the proposed ALC-PSO algorithm. 相似文献
2.
Ying Li Yijia Cao Zhaoyan Liu Yi Liu Quanyuan Jiang 《Computers & Mathematics with Applications》2009,57(11-12):1835
In this paper, Message Passing Interface (MPI) based parallel computation and particle swarm optimization (PSO) algorithm are combined to form the parallel particle swarm optimization (PPSO) method for solving the dynamic optimal reactive power dispatch (DORPD) problem in power systems. In the proposed algorithm, the DORPD problem is divided into smaller ones, which can be carried out concurrently by multi-processors. This method is evaluated on a group of IEEE power systems test cases with time-varying loads in which the control of the generator terminal voltages, tap position of transformers and reactive power sources are involved to minimize the transmission power loss and the costs of adjusting the control devices. The simulation results demonstrate the accuracy of the PPSO algorithm and its capability of greatly reducing the runtimes of the DORPD programs. 相似文献
3.
This paper presents a new algorithm designed to find the optimal parameters of PID controller. The proposed algorithm is based on hybridizing between differential evolution (DE) and Particle Swarm Optimization with an aging leader and challengers (ALC-PSO) algorithms. The proposed algorithm (ALC-PSODE) is tested on twelve benchmark functions to confirm its performance. It is found that it can get better solution quality, higher success rate in finding the solution and yields in avoiding unstable convergence. Also, ALC-PSODE is used to tune PID controller in three tanks liquid level system which is a typical nonlinear control system. Compared to different PSO variants, genetic algorithm (GA), differential evolution (DE) and Ziegler–Nichols method; the proposed algorithm achieve the best results with least standard deviation for different swarm size. These results show that ALC-PSODE is more robust and efficient while keeping fast convergence. 相似文献
4.
Self-adaptive learning based particle swarm optimization 总被引:5,自引:0,他引:5
Particle swarm optimization (PSO) is a population-based stochastic search technique for solving optimization problems over continuous space, which has been proven to be efficient and effective in wide applications in scientific and engineering domains. However, the universality of current PSO variants, i.e., their ability to achieve good performance on a variety of different fitness landscapes, is still unsatisfying. For many practical problems, where the fitness landscapes are usually unknown, employing a trial-and-error scheme to search for the most suitable PSO variant is computationally expensive. Therefore, it is necessary to develop a more adaptive and robust PSO version to provide users a black-box tool for various application problems. In this paper, we propose a self-adaptive learning based PSO (SLPSO) to make up the above demerits. SLPSO simultaneously adopts four PSO based search strategies. A probability model is used to describe the probability of a strategy being used to update a particle. The model is self-adaptively improved according to the strategies’ ability of generating better quality solutions in the past generations. In order to evaluate the performance of SLPSO, we compare it with eight state-of-the-art PSO variants on 26 numerical optimization problems with different characteristics such as uni-modality, multi-modality, rotation, ill-condition, mis-scale and noise. The experimental results clearly verify the advantages of SLPSO. Moreover, a practical engineering problem, the economic load dispatch problem of power systems (ELD), is used to further evaluate SLPSO. Compared with the previous effective ELD evolutionary algorithms, SLPSO can update the best solution records. 相似文献
5.
Economic load dispatch (ELD) problems have been an important issue in optimal operation and planning of power system. Characterized by non-convex/non-smooth properties and various practical constraints, the ELD problems are difficult to solve using conventional optimization techniques. In this paper, an improved orthogonal design particle swarm optimization (IODPSO) algorithm is presented for solving the single-area and multi-area ELD problems with nonlinear characteristics of the generators, such as valve-point effects, prohibited operating zones, ramp rate limits and multiple fuels. In the IODPSO algorithm, an orthogonal designed method is used to construct a promising exemplar. Multiple auxiliary vector generating strategies are proposed to enhance the efficiency and effectiveness of orthogonal design operations. A tent chaotic map is employed for the adaptation of the acceleration coefficients, thus improving the proposed algorithm's robustness and global search capabilities. In addition, we designed a repair method to handle the practical constraints. Six cases of ELD problems with different characteristics are utilized to benchmark the proposed algorithm. Experimental results demonstrate that IODPSO algorithm is a promising approach for solving the non-convex/non-smooth ELD problems. 相似文献
6.
为解决电力系统中的经济负荷分配问题,提出一种将约束优化与粒子群优化算法相结合的混合算法,同时引入直接搜索方法。使得混合后的粒子群优化算法不但具有高效的全局搜索能力,而且具有较强的局部搜索能力,避免陷入局部最优,提高求解精度。对两个实例进行测试,与其他智能算法的结果比较,证明提出的算法可以有效找到可行解,避免陷入局部最优,实现问题的快速求解。 相似文献
7.
Dongxiao Niu Jinchao Li Jinying Li Da Liu 《Computers & Mathematics with Applications》2009,57(11-12):1883
Middle-long forecasting of electric power load is crucial to electric investment, which is the guarantee of the healthy development of electric industry. In this paper, the particle swarm optimization (PSO) is used as a training algorithm to obtain the weights of the single forecasting method to form the combined forecasting method. Firstly, several forecasting methods are used to do middle-long power load forecasting. Then the upper forecasting methods are measured by several indices and the entropy method is used to form a comprehensive forecasting method evaluation index, following which the PSO is used to attain a combined forecasting method (PSOCF) with the best objective function value. We then obtain the final result by adding all the results of every single forecasting method. Taking actual load data of a power grid company in North China as a sample, the results show that PSOCF model improves the forecasting precision compared to the traditional models. 相似文献
8.
In recent years, particle swarm optimization (PSO) has extensively applied in various optimization problems because of its simple structure. Although the PSO may find local optima or exhibit slow convergence speed when solving complex multimodal problems. Also, the algorithm requires setting several parameters, and tuning the parameters is a challenging for some optimization problems. To address these issues, an improved PSO scheme is proposed in this study. The algorithm, called non-parametric particle swarm optimization (NP-PSO) enhances the global exploration and the local exploitation in PSO without tuning any algorithmic parameter. NP-PSO combines local and global topologies with two quadratic interpolation operations to increase the search ability. Nineteen (19) unimodal and multimodal nonlinear benchmark functions are selected to compare the performance of NP-PSO with several well-known PSO algorithms. The experimental results showed that the proposed method considerably enhances the efficiency of PSO algorithm in terms of solution accuracy, convergence speed, global optimality, and algorithm reliability. 相似文献
9.
Management and scheduling of reactive power resources is one of the important and prominent problems in power system operation and control. It deals with stable and secure operation of power systems from voltage stability and voltage profile improvement point of views. To this end, a novel Fuzzy Adaptive Heterogeneous Comprehensive-Learning Particle Swarm Optimization (FAHCLPSO) algorithm with enhanced exploration and exploitation processes is proposed to solve the Optimal Reactive Power Dispatch (ORPD) problem. Two different objective functions including active power transmission losses and voltage deviation, which play important roles in power system operation and control, are considered in this paper. In order to authenticate the accuracy and performance of the proposed FAHCLPSO, it applied on three different standard test systems including IEEE 30-bus, IEEE 118-bus and IEEE 354-bus test systems with six, fifty-four and one-hundred-sixty-two generation units, respectively. Finally, outcomes of the proposed algorithm are compared with the results of the original PSO and those in other literatures. The comparison proves the supremacy of the proposed algorithm in solving the complex optimization problem. 相似文献
10.
11.
粒子群优化算法分析及研究进展 总被引:5,自引:5,他引:5
粒子群优化算法是一类基于群体智能的启发式全局优化技术,群体中的每一个微粒代表待解决问题的一个候选解,算法通过粒子间信息素的交互作用发现复杂搜索空间中的最优区域。本文介绍了粒子群优化算法的基本原理,并通过建立记忆表,详尽描述了粒子群优化算法中个体极优和全局极优的搜寻求解过程。同时,文章给出了多种改进形式以及研究现状,并提出了未来可能的研究方向。 相似文献
12.
Particle swarm optimization (PSO) is one of the well-known population-based techniques used in global optimization and many engineering problems. Despite its simplicity and efficiency, the PSO has problems as being trapped in local minima due to premature convergence and weakness of global search capability. To overcome these disadvantages, the PSO is combined with Levy flight in this study. Levy flight is a random walk determining stepsize using Levy distribution. Being used Levy flight, a more efficient search takes place in the search space thanks to the long jumps to be made by the particles. In the proposed method, a limit value is defined for each particle, and if the particles could not improve self-solutions at the end of current iteration, this limit is increased. If the limit value determined is exceeded by a particle, the particle is redistributed in the search space with Levy flight method. To get rid of local minima and improve global search capability are ensured via this distribution in the basic PSO. The performance and accuracy of the proposed method called as Levy flight particle swarm optimization (LFPSO) are examined on well-known unimodal and multimodal benchmark functions. Experimental results show that the LFPSO is clearly seen to be more successful than one of the state-of-the-art PSO (SPSO) and the other PSO variants in terms of solution quality and robustness. The results are also statistically compared, and a significant difference is observed between the SPSO and the LFPSO methods. Furthermore, the results of proposed method are also compared with the results of well-known and recent population-based optimization methods. 相似文献
13.
In this paper, a newly surfaced nature-inspired optimization technique called moth-flame optimization (MFO) algorithm is utilized to address the optimal reactive power dispatch (ORPD) problem. MFO algorithm is inspired by the natural navigation technique of moths when they travel at night, where they use visible light sources as guidance. In this paper, MFO is realized in ORPD problem to investigate the best combination of control variables including generators voltage, transformers tap setting as well as reactive compensators sizing to achieve minimum total power loss and minimum voltage deviation. Furthermore, the effectiveness of MFO algorithm is compared with other identified optimization techniques on three case studies, namely IEEE 30-bus system, IEEE 57-bus system and IEEE 118-bus system. The statistical analysis of this research illustrated that MFO is able to produce competitive results by yielding lower power loss and lower voltage deviation than the selected techniques from literature. 相似文献
14.
Cellular particle swarm optimization 总被引:1,自引:0,他引:1
This paper proposes a cellular particle swarm optimization (CPSO), hybridizing cellular automata (CA) and particle swarm optimization (PSO) for function optimization. In the proposed CPSO, a mechanism of CA is integrated in the velocity update to modify the trajectories of particles to avoid being trapped in the local optimum. With two different ways of integration of CA and PSO, two versions of CPSO, i.e. CPSO-inner and CPSO-outer, have been discussed. For the former, we devised three typical lattice structures of CA used as neighborhood, enabling particles to interact inside the swarm; and for the latter, a novel CA strategy based on “smart-cell” is designed, and particles employ the information from outside the swarm. Theoretical studies are made to analyze the convergence of CPSO, and numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on benchmark test functions. 相似文献
15.
16.
In this paper, a novel CMOQPSO algorithm is proposed, in which cultural evolution mechanism is introduced into quantum-behaved particle swarm optimization (QPSO) to solve multiobjective environmental/economic dispatch (EED) problems. There are growing concerns about the ability of QPSO to handle multiobjective optimization problems. Two important issues in extending QPSO to multiobjective context are the construction of exemplar positions for each particle and the maintenance of population diversity. In the proposed CMOQPSO, one particle is measured for multiple times at each iteration in order to enhance its global searching ability. Belief space, which is based on cultural evolution mechanism and contains different types of knowledge extracted from the particle swarm, is adopted to generate global best positions for the multiple measurements of each particle. Moreover, to maintain population diversity and avoid premature, a novel local search operator, which is based on the knowledge in belief space, is proposed in this paper. CMOQPSO is compared with several state-of-art algorithms and tested on EED systems with 6 and 40 generators respectively. The comparative results demonstrate the effectiveness of the proposed algorithm. 相似文献
17.
This paper suggests integrating a unification factor into particle swarm optimization (PSO) to balance the effects of cognitive and social terms. The resultant unified particle swarm (UPS) moves particles toward the center of its personal best and the global best. This improves on PSO, which moves particles far beyond the center. Widely used benchmark functions and four types of experiments demonstrate that the proposed UPS uses slightly more computational time than PSO to attain significantly higher efficiency and, usually, better solution effectiveness and consistency than PSO. Robust performance was further demonstrated by the significantly higher efficiency and better solution effectiveness and stability achieved by the UPS, as compared to the PSO and its variants. Outstandingly, convergence speeds for the proposed UPS were very good on the 13 benchmark functions examined in experiment 1, demonstrating the correct movement of UPS particles toward convergence. 相似文献
18.
Particle swarm optimization (PSO) is one of the most important research topics on swarm intelligence. Existing PSO techniques, however, still contain some significant disadvantages. In this paper, we present a new QBL-PSO algorithm that uses QBL (query-based learning) to improve both the exploratory and exploitable capabilities of PSO. Here, we apply a QBL method proposed in our previous research to PSO, and then test this new algorithm on a real case study on problems of power conservation. Our algorithm not only broadens the search diversity of PSO, but also improves its precision. Conventional PSO often snag on local solutions when performing queries, instead of finding better global solutions. To resolve this limitation, when particles converge in nature, we direct some of them into an “ambiguous solution space” defined by our algorithm. This paper introduces two ways to invoke this QBL algorithm. Our experimental results confirm that the proposed method attains better convergence to the global best solution. Finally, we present a new PSO model for solving multi-objective power conservation problems. Overall, this model successfully reduces power consumption, and to our knowledge, this paper represents the first attempt within the literature to apply the QBL concept to PSO. 相似文献
19.
利用变异机制可以增加遗传算法全局寻优能力的特性,结合惯性权值线性递减PSO算法具有较快收敛速度的优点,提出了一种双种群变异PSO算法,对该算法与其他PSO算法进行了比较,仿真结果表明其性能优越。 相似文献