首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Discovery of maximum length frequent itemsets   总被引:1,自引:0,他引:1  
The use of frequent itemsets has been limited by the high computational cost as well as the large number of resulting itemsets. In many real-world scenarios, however, it is often sufficient to mine a small representative subset of frequent itemsets with low computational cost. To that end, in this paper, we define a new problem of finding the frequent itemsets with a maximum length and present a novel algorithm to solve this problem. Indeed, maximum length frequent itemsets can be efficiently identified in very large data sets and are useful in many application domains. Our algorithm generates the maximum length frequent itemsets by adapting a pattern fragment growth methodology based on the FP-tree structure. Also, a number of optimization techniques have been exploited to prune the search space. Finally, extensive experiments on real-world data sets validate the proposed algorithm.  相似文献   

2.
事务间频繁项集将传统的单维事务内关联规则扩展到多维跨事务关联规则,但事务问频繁项集的数量随滑 动时同间窗口的增大而迅速增加.利用频繁闭项集的特点.提出事务间频繁闭项集的概念及其挖掘算法(FCITA).该算法采用分割和条件数据库技术,避免生成庞大的扩展数据库;利用扩展二进制形武压缩事务,从而提高支持度的计算效事.此外,动态排序和哈希表极大地减少了频繁闭项集的测试次数.仿真比较表明,FCITA算法具有较高的挖掘效率.  相似文献   

3.
基于FP-tree的最大频繁项目集挖掘算法   总被引:1,自引:0,他引:1  
最大频繁项目集挖掘是数据挖掘领域最重要的基本问题之一,在分析已有算法的基础上提出了FP-MMFI算法,它是对FP-growth算法在最大频繁项目集挖掘上的扩展.提出了频繁路径的概念,用它可以有效地对FP-tree进行压缩和缩小搜索空间,同时使用投影的方法对超集检测进行了优化,减少了项目匹配的次数.最后实验结果表明,该算法在性能上优于已有的同类算法.  相似文献   

4.
Online mining of data streams is an important data mining problem with broad applications. However, it is also a difficult problem since the streaming data possess some inherent characteristics. In this paper, we propose a new single-pass algorithm, called DSM-FI (data stream mining for frequent itemsets), for online incremental mining of frequent itemsets over a continuous stream of online transactions. According to the proposed algorithm, each transaction of the stream is projected into a set of sub-transactions, and these sub-transactions are inserted into a new in-memory summary data structure, called SFI-forest (summary frequent itemset forest) for maintaining the set of all frequent itemsets embedded in the transaction data stream generated so far. Finally, the set of all frequent itemsets is determined from the current SFI-forest. Theoretical analysis and experimental studies show that the proposed DSM-FI algorithm uses stable memory, makes only one pass over an online transactional data stream, and outperforms the existing algorithms of one-pass mining of frequent itemsets.
Suh-Yin LeeEmail:
  相似文献   

5.
一种基于变尺度滑动窗口的数据流频繁集挖掘算法   总被引:2,自引:0,他引:2  
基干传统滑动窗口机制的数据流频繁集挖掘算法较多地考虑快速且精确的效果,而较少考虑数据流的时变特性,对传统的滑动窗口机制进行改进.同时考虑数据流的海量特性和时变特性,提出一种基于变尺度滑动窗口机制的数据流频繁集挖掘算法V-Stream.该算法采用事务链表组的概要数据结构.能够根据数据流的数据分布变化自适应调整窗口大小.Eclipse上的仿真实验结果表明,V-Stream相比Manku算法提高了挖掘数据流频繁集的时间与空间效率.  相似文献   

6.
通过对关联规则挖掘技术及经典算法Apriori和FP-growth的研究和分析,提出了一种改进的频繁项集挖掘算法。该算法利用矩阵存储数据,并结合矩阵运算求项集的支持数,有效减少了事务数据库的扫描次数;利用有序频繁项目邻接矩阵创建频繁模式树,有效减少了频繁模式树的分支和层数。通过实例分析了频繁项集的挖掘过程。  相似文献   

7.
Mining frequent itemsets from transactional data streams is challenging due to the nature of the exponential explosion of itemsets and the limit memory space required for mining frequent itemsets. Given a domain of I unique items, the possible number of itemsets can be up to 2I − 1. When the length of data streams approaches to a very large number N, the possibility of an itemset to be frequent becomes larger and difficult to track with limited memory. The existing studies on finding frequent items from high speed data streams are false-positive oriented. That is, they control memory consumption in the counting processes by an error parameter ?, and allow items with support below the specified minimum support s but above s − ? counted as frequent ones. However, such false-positive oriented approaches cannot be effectively applied to frequent itemsets mining for two reasons. First, false-positive items found increase the number of false-positive frequent itemsets exponentially. Second, minimization of the number of false-positive items found, by using a small ?, will make memory consumption large. Therefore, such approaches may make the problem computationally intractable with bounded memory consumption. In this paper, we developed algorithms that can effectively mine frequent item(set)s from high speed transactional data streams with a bound of memory consumption. Our algorithms are based on Chernoff bound in which we use a running error parameter to prune item(set)s and use a reliability parameter to control memory. While our algorithms are false-negative oriented, that is, certain frequent itemsets may not appear in the results, the number of false-negative itemsets can be controlled by a predefined parameter so that desired recall rate of frequent itemsets can be guaranteed. Our extensive experimental studies show that the proposed algorithms have high accuracy, require less memory, and consume less CPU time. They significantly outperform the existing false-positive algorithms.  相似文献   

8.
为了提高经典关联规则Apriori算法的挖掘效率,针对Apriori算法的瓶颈问题,提出了一种链式结构存储频繁项目集并生成最大频繁项目集的关联规则算法.该算法采用比特向量方式存储事务,生成频繁项目集的同时,把包含此频繁项目的事务作为链表连接到频繁项目之后,生成最大频繁项目集.该算法能够减小扫描事物数据库的次数和生成候选项目集的数量,从而减少了生成最大频繁项目集的时间,实验结果表明,该算法提高了运算效率.  相似文献   

9.
A data stream is a massive, open-ended sequence of data elements continuously generated at a rapid rate. Mining data streams is more difficult than mining static databases because the huge, high-speed and continuous characteristics of streaming data. In this paper, we propose a new one-pass algorithm called DSM-MFI (stands for Data Stream Mining for Maximal Frequent Itemsets), which mines the set of all maximal frequent itemsets in landmark windows over data streams. A new summary data structure called summary frequent itemset forest (abbreviated as SFI-forest) is developed for incremental maintaining the essential information about maximal frequent itemsets embedded in the stream so far. Theoretical analysis and experimental studies show that the proposed algorithm is efficient and scalable for mining the set of all maximal frequent itemsets over the entire history of the data streams.  相似文献   

10.
Frequent closed itemsets (FCI) play an important role in pruning redundant rules fast. Therefore, a lot of algorithms for mining FCI have been developed. Algorithms based on vertical data formats have some advantages in that they require scan databases once and compute the support of itemsets fast. Recent years, BitTable (Dong & Han, 2007) and IndexBitTable (Song, Yang, & Xu, 2008) approaches have been applied for mining frequent itemsets and results are significant. However, they always use a fixed size of Bit-Vector for each item (equal to number of transactions in a database). It leads to consume more memory for storage Bit-Vectors and the time for computing the intersection among Bit-Vectors. Besides, they only apply for mining frequent itemsets, algorithm for mining FCI based on BitTable is not proposed. This paper introduces a new method for mining FCI from transaction databases. Firstly, Dynamic Bit-Vector (DBV) approach will be presented and algorithms for fast computing the intersection between two DBVs are also proposed. Lookup table is used for fast computing the support (number of bits 1 in a DBV) of itemsets. Next, subsumption concept for memory and computing time saving will be discussed. Finally, an algorithm based on DBV and subsumption concept for mining frequent closed itemsets fast is proposed. We compare our method with CHARM, and recognize that the proposed algorithm is more efficient than CHARM in both the mining time and the memory usage.  相似文献   

11.
A survey on algorithms for mining frequent itemsets over data streams   总被引:1,自引:8,他引:1  
The increasing prominence of data streams arising in a wide range of advanced applications such as fraud detection and trend learning has led to the study of online mining of frequent itemsets (FIs). Unlike mining static databases, mining data streams poses many new challenges. In addition to the one-scan nature, the unbounded memory requirement and the high data arrival rate of data streams, the combinatorial explosion of itemsets exacerbates the mining task. The high complexity of the FI mining problem hinders the application of the stream mining techniques. We recognize that a critical review of existing techniques is needed in order to design and develop efficient mining algorithms and data structures that are able to match the processing rate of the mining with the high arrival rate of data streams. Within a unifying set of notations and terminologies, we describe in this paper the efforts and main techniques for mining data streams and present a comprehensive survey of a number of the state-of-the-art algorithms on mining frequent itemsets over data streams. We classify the stream-mining techniques into two categories based on the window model that they adopt in order to provide insights into how and why the techniques are useful. Then, we further analyze the algorithms according to whether they are exact or approximate and, for approximate approaches, whether they are false-positive or false-negative. We also discuss various interesting issues, including the merits and limitations in existing research and substantive areas for future research.  相似文献   

12.
频繁闭项目集挖掘是数据挖掘研究中的一个重要研究课题.目前已有的频繁闭项目集挖掘算法主要针对单机环境,有关分布式环境下的全局频繁闭项目集挖掘算法的研究尚不多见.为此,本文提出了一种快速挖掘全局频繁闭项目集算法,并对其更新问题进行了研究;提出了一种相应的频繁闭项目集增量式更新算法,该算法将充分利用先前的挖掘结果来节省发现新的全局频繁闭项目集的时间开销.实验结果表明算法是有效的.  相似文献   

13.
14.
Mining frequent itemsets has emerged as a fundamental problem in data mining and plays an essential role in many important data mining tasks.In this paper,we propose a novel vertical data representation called N-list,which originates from an FP-tree-like coding prefix tree called PPC-tree that stores crucial information about frequent itemsets.Based on the N-list data structure,we develop an efficient mining algorithm,PrePost,for mining all frequent itemsets.Efficiency of PrePost is achieved by the following three reasons.First,N-list is compact since transactions with common prefixes share the same nodes of the PPC-tree.Second,the counting of itemsets’ supports is transformed into the intersection of N-lists and the complexity of intersecting two N-lists can be reduced to O(m + n) by an efficient strategy,where m and n are the cardinalities of the two N-lists respectively.Third,PrePost can directly find frequent itemsets without generating candidate itemsets in some cases by making use of the single path property of N-list.We have experimentally evaluated PrePost against four state-of-the-art algorithms for mining frequent itemsets on a variety of real and synthetic datasets.The experimental results show that the PrePost algorithm is the fastest in most cases.Even though the algorithm consumes more memory when the datasets are sparse,it is still the fastest one.  相似文献   

15.
A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. Consequently, the knowledge embedded in a data stream is more likely to be changed as time goes by. Identifying the recent change of a data stream, especially for an online data stream, can provide valuable information for the analysis of the data stream. However, most of mining algorithms or frequency approximation algorithms over a data stream do not differentiate the information of recently generated data elements from the obsolete information of old data elements which may be no longer useful or possibly invalid at present. Therefore, they are not able to extract the recent change of information in a data stream adaptively. This paper proposes a data mining method for finding recently frequent itemsets adaptively over an online transactional data stream. The effect of old transactions on the current mining result of a data steam is diminished by decaying the old occurrences of each itemset as time goes by. Furthermore, several optimization techniques are devised to minimize processing time as well as memory usage. Finally, the performance of the proposed method is analyzed by a series of experiments to identify its various characteristics.  相似文献   

16.
A complete set of frequent itemsets can get undesirably large due to redundancy when the minimum support threshold is low or when the database is dense. Several concise representations have been previously proposed to eliminate the redundancy. Generator based representations rely on a negative border to make the representation lossless. However, the number of itemsets on a negative border sometimes even exceeds the total number of frequent itemsets. In this paper, we propose to use a positive border together with frequent generators to form a lossless representation. A positive border is usually orders of magnitude smaller than its corresponding negative border. A set of frequent generators plus its positive border is always no larger than the corresponding complete set of frequent itemsets, thus it is a true concise representation. The generalized form of this representation is also proposed. We develop an efficient algorithm, called GrGrowth, to mine generators and positive borders as well as their generalizations. The GrGrowth algorithm uses the depth-first-search strategy to explore the search space, which is much more efficient than the breadth-first-search strategy adopted by most of the existing generator mining algorithms. Our experiment results show that the GrGrowth algorithm is significantly faster than level-wise algorithms for mining generator based representations, and is comparable to the state-of-the-art algorithms for mining frequent closed itemsets.
Guimei LiuEmail:
  相似文献   

17.
Many researchers in database and machine learning fields are primarily interested in data mining because it offers opportunities to discover useful information and important relevant patterns in large databases. Most previous studies have shown how binary valued transaction data may be handled. Transaction data in real-world applications usually consist of quantitative values, so designing a sophisticated data-mining algorithm able to deal with various types of data presents a challenge to workers in this research field. In the past, we proposed a fuzzy data-mining algorithm to find association rules. Since sequential patterns are also very important for real-world applications, this paper thus focuses on finding fuzzy sequential patterns from quantitative data. A new mining algorithm is proposed, which integrates the fuzzy-set concepts and the AprioriAll algorithm. It first transforms quantitative values in transactions into linguistic terms, then filters them to find sequential patterns by modifying the AprioriAll mining algorithm. Each quantitative item uses only the linguistic term with the maximum cardinality in later mining processes, thus making the number of fuzzy regions to be processed the same as the number of the original items. The patterns mined out thus exhibit the sequential quantitative regularity in databases and can be used to provide some suggestions to appropriate supervisors.  相似文献   

18.
In recent times, data are generated as a form of continuous data streams in many applications. Since handling data streams is necessary and discovering knowledge behind data streams can often yield substantial benefits, mining over data streams has become one of the most important issues. Many approaches for mining frequent itemsets over data streams have been proposed. These approaches often consist of two procedures including continuously maintaining synopses for data streams and finding frequent itemsets from the synopses. However, most of the approaches assume that the synopses of data streams can be saved in memory and ignore the fact that the information of the non-frequent itemsets kept in the synopses may cause memory utilization to be significantly degraded. In this paper, we consider compressing the information of all the itemsets into a structure with a fixed size using a hash-based technique. This hash-based approach skillfully summarizes the information of the whole data stream by using a hash table, provides a novel technique to estimate the support counts of the non-frequent itemsets, and keeps only the frequent itemsets for speeding up the mining process. Therefore, the goal of optimizing memory space utilization can be achieved. The correctness guarantee, error analysis, and parameter setting of this approach are presented and a series of experiments is performed to show the effectiveness and the efficiency of this approach.  相似文献   

19.
Mining frequent trajectory patterns in spatial-temporal databases   总被引:1,自引:0,他引:1  
In this paper, we propose an efficient graph-based mining (GBM) algorithm for mining the frequent trajectory patterns in a spatial-temporal database. The proposed method comprises two phases. First, we scan the database once to generate a mapping graph and trajectory information lists (TI-lists). Then, we traverse the mapping graph in a depth-first search manner to mine all frequent trajectory patterns in the database. By using the mapping graph and TI-lists, the GBM algorithm can localize support counting and pattern extension in a small number of TI-lists. Moreover, it utilizes the adjacency property to reduce the search space. Therefore, our proposed method can efficiently mine the frequent trajectory patterns in the database. The experimental results show that it outperforms the Apriori-based and PrefixSpan-based methods by more than one order of magnitude.  相似文献   

20.
快速挖掘全局频繁项目集   总被引:32,自引:1,他引:32  
分布式环境中,全局频繁项目集的挖掘是数据挖掘中最重要的研究课题之一.传统的全局频繁项目集挖掘算法采用Apriori算法框架,须多遍扫描数据库并产生大量的候选项目集,且通过传送局部频繁项目集求全局频繁项目集的网络通信代价高.为此,提出了一种分布数据库的全局频繁项目集快速挖掘算法——FMAGF.FMAGF算法采用传送条件频繁模式树或条件模式基来挖掘全局频繁项目集,可有效地减小网络通信量,提高全局频繁项目集挖掘效率.理论分析和实验结果表明提出的算法是有效可行的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号