首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
基于径向基函数(RBF)的安徽省GDP增长模拟与预测   总被引:3,自引:0,他引:3  
本文运用新型非线性径向基函数RBF神经网络模型,对安徽省国内生产总值(GDP)进行了宏观经济模拟预测分析,结果证明与其它经济计量方法相比较,网络模型新颖,具有较好的预测精度及效果,可广泛应用于各种预测研究,有较高的应用推广价值。  相似文献   

2.
An ensemble of neural networks for weather forecasting   总被引:4,自引:2,他引:2  
This study presents the applicability of an ensemble of artificial neural networks (ANNs) and learning paradigms for weather forecasting in southern Saskatchewan, Canada. The proposed ensemble method for weather forecasting has advantages over other techniques like linear combination. Generally, the output of an ensemble is a weighted sum, which are weight-fixed, with the weights being determined from the training or validation data. In the proposed approach, weights are determined dynamically from the respective certainties of the network outputs. The more certain a network seems to be of its decision, the higher the weight. The proposed ensemble model performance is contrasted with multi-layered perceptron network (MLPN), Elman recurrent neural network (ERNN), radial basis function network (RBFN), Hopfield model (HFM) predictive models and regression techniques. The data of temperature, wind speed and relative humidity are used to train and test the different models. With each model, 24-h-ahead forecasts are made for the winter, spring, summer and fall seasons. Moreover, the performance and reliability of the seven models are then evaluated by a number of statistical measures. Among the direct approaches employed, empirical results indicate that HFM is relatively less accurate and RBFN is relatively more reliable for the weather forecasting problem. In comparison, the ensemble of neural networks produced the most accurate forecasts.  相似文献   

3.
This paper explores the use of artificial neural networks (ANNs) as a valid alternative to the traditional job-shop simulation approach. Feed forward, multi-layered neural network metamodels were trained through the back-error-propagation (BEP) learning algorithm to provide a versatile job-shop scheduling analysis framework. The constructed neural network architectures were capable of satisfactorily estimating the manufacturing lead times (MLT) for orders simultaneously processed in a four-machine job shop. The MLTs produced by the developed ANN models turned out to be as valid as the data generated from three well-known simulation packages, i.e. Arena, SIMAN, and ProModel. The ANN outputs proved not to be substantially different from the results provided by other valid models such as SIMAN and ProModel when compared against the adopted baseline, Arena. The ANN-based simulations were able to fairly capture the underlying relationship between jobs' machine sequences and their resulting average flowtimes, which proves that ANNs are a viable tool for stochastic simulation metamodeling.  相似文献   

4.
Milling force prediction using regression and neural networks   总被引:3,自引:2,他引:1  
This study focuses on developing a good empirical relationship between the cutting force in an end milling operation and the cutting parameters such as speed, feed and depth-of-cut, by using both multiple regression and neural network modeling processes. A regression model was first fitted to experimentally collected data and any abnormal data points indicated by this analysis were filtered out. By repeating this process several times, a final set of filtered data was obtained and analyzed using neural networks to yield a good, final model. This study shows that analyzing milling force data using conventional regression can lead to a more accurate neural networks model for force prediction.  相似文献   

5.
In this paper we have addressed the problem of finding a path through a maze of a given size. The traditional ways of finding a path through a maze employ recursive algorithms in which unwanted or non-paths are eliminated in a recursive manner. Neural networks with their parallel and distributed nature of processing seem to provide a natural solution to this problem. We present a biologically inspired solution using a two level hierarchical neural network for the mapping of the maze as also the generation of the path if it exists. For a maze of size S the amount of time it takes would be a function of S (O(S)) and a shortest path (if more than one path exists) could be found in around S cycles where each cycle involves all the neurons doing their processing in a parallel manner. The solution presented in this paper finds all valid paths and a simple technique for finding the shortest path amongst them is also given. The results are very encouraging and more applications of the network setup used in this report are currently being investigated. These include synthetic modeling of biological neural mechanisms, traversal of decision trees, modeling of associative neural networks (as in relating visual and auditory stimuli of a given phenomenon) and surgical micro-robot trajectory planning and execution.  相似文献   

6.
Ranking importance of input parameters of neural networks   总被引:2,自引:0,他引:2  
Artificial neural networks have been used for simulation, modeling, and control purposes in many engineering applications as an alternative to conventional expert systems. Although neural networks usually do not reach the level of performance exhibited by expert systems, they do enjoy a tremendous advantage of very low construction costs. This paper addresses the issue of identifying important input parameters in building a multilayer, backpropagation network for a typical class of engineering problems. These problems are characterized by having a large number of input variables of varying degrees of importance; and identifying the important variables is a common issue since elimination of the unimportant inputs leads to a simplification of the problem and often a more accurate modeling or solution. We compare three different methods for ranking input importance: sensitivity analysis, fuzzy curves, and change of MSE (mean square error); and analyze their effectiveness. Simulation results based on experiments with simple mathematical functions as well as a real engineering problem are reported. Based on the analysis and our experience in building neural networks, we also propose a general methodology for building backpropagation networks for typical engineering applications.  相似文献   

7.
This paper compares a feature transformation method using a genetic algorithm (GA) with two conventional methods for artificial neural networks (ANNs). In this study, the GA is incorporated to improve the learning and generalizability of ANNs for stock market prediction. Daily predictions are conducted and prediction accuracy is measured. In this study, three feature transformation methods for ANNs are compared. Comparison of the results achieved by a feature transformation method using the GA to the other two feature transformation methods shows that the performance of the proposed model is better. Experimental results show that the proposed approach reduces the dimensionality of the feature space and decreases irrelevant factors for stock market prediction.  相似文献   

8.
Vibration behavior of any solid structure reveals certain dynamic characteristics and property parameters of that structure. Inverse problems dealing with vibration response utilize the response signals to find out input factors and/or certain structural properties. Due to certain drawbacks of traditional solutions to inverse problems, ANNs have gained a major popularity in this field. This paper reviews some earlier researches where ANNs were applied to solve different vibration-based inverse parametric identification problems. The adoption of different ANN algorithms, input-output schemes and required signal processing were denoted in considerable detail. In addition, a number of issues have been reported, including the factors that affect ANNs’ prediction, as well as the advantage and disadvantage of ANN approaches with respect to general inverse methods Based on the critical analysis, suggestions to potential researchers have also been provided for future scopes.  相似文献   

9.
In this work, artificial neural networks (ANNs) are proposed to predict the dorsal pressure over the foot surface exerted by the shoe upper while walking. A model that is based on the multilayer perceptron (MLP) is used since it can provide a single equation to model the exerted pressure for all the materials used as shoe uppers. Five different models are produced, one model for each one of the four subjects under study and an overall model for the four subjects. The inputs to the neural model include the characteristics of the material and the positions during a whole step of 14 pressure sensors placed on the foot surface. The goal is to find models with good generalization capabilities, (i.e., models that work appropriately not only for the cases used to train the model but also for new cases) in order to have a useful predictor in routine practice. New cases may involve either new materials for the same subject or even new subjects and new materials. To accomplish this goal, two thirds of the patterns are trained to obtain the model (training data set) and the remaining third is kept for validation purposes. The achieved accuracy was very satisfactory since correlation coefficients between the predicted output and the actual pressure in the validation data were higher than 0.95 for those models developed for individual subjects. For the much more challenging problem of an overall prediction for all the subjects, the correlation coefficient was close to 0.9 in the validation data set (i.e., with data not previously seen by the model).  相似文献   

10.
It is time to locate connectionist representation theory in the new wave of robotics research. The utility of representations developed in artificial neural networks (ANNs) during learning has been demonstrated in cognitive science research since the 1980s. The research reported here puts learned representations to work in a decentered control task, the disembodied arm problem, in which a mobile robot operates an arm fixed to a table to pick up objects. There is no physical linkage between the arm and the robot and so the robot's point of view must be decentered. This is done by developing a modular Artificial Neural Net system in three stages: (i) a classifier net is trained with laser scan data to output transformationally invariant position classes; (ii) an arm net is trained for picking up objects; (iii) an inter net is trained to communicate and coordinate the sensing and acting. The completed system is shown to create new nonsymbolic transformationally invariant representations in order to perform the effective generalization of decentered viewpoints.  相似文献   

11.
基于RBF神经网络的非线性时间序列在线预测   总被引:3,自引:1,他引:3  
针对非线性非高斯时间序列, 提出观测噪声服从隐马尔可夫模型(HMM)的径向基函数(RBF)神经网络(RBF-HMM)预测模型, 其特点在于模型输入包含误差反馈项、RBF网络隐含层节点数的可变性和观测噪声的隐马尔可夫性; 并采用序列蒙特卡罗(SMC)方法实现基于RBF-HMM模型的时间序列在线预测. 最后采用太阳黑子数平滑月均值数据和CRU国际钢材价格指数月数据进行实证研究, 结果表明该模型的有效性.  相似文献   

12.
Just-suspension speed (Njs) is an important parameter for stirred tank design using a solid-liquid mixing system in the chemical process industry. However, current correlations for Njs suffer from uncertainty from limited experimental databases and limitations due to many parameters that play an important role in Njs determination. A comprehensive computation of the radial basis function neural network (RBFNN) was developed based on solid-liquid mixing experiments, which contain 935 datasets for the prediction of Njs. The Njs values were obtained experimentally using Zwietering correlation with different solid loading percentages, solid particle density, solid particle diameter, mixing solvent density, number of impeller blades, impeller diameter, impeller blade hub angle, impeller blade tip angle, the width of the impeller blade and the ratio of the clearance between the impeller and the bottom of the tank with the tank diameter. The RBFNN proved to have a much better ability to accurately predict the desired Njs compared to MLPNN even after decreasing the number of input variables from 11 to 8. Thus, the computational RBFNN model results will be useful for extending the application of a solid-liquid mixing system for estimating the just-suspension speed for stirred tank design.  相似文献   

13.
In the present paper Artificial Neural Networks (ANNs) models are proposed for the prediction of surface roughness in Electrical Discharge Machining (EDM). For this purpose two well-known programs, namely Matlab® with associated toolboxes, as well as Netlab®, were emplo- yed. Training of the models was performed with data from an extensive series of EDM experiments on steel grades; the proposed models use the pulse current, the pulse duration, and the processed material as input parameters. The reported results indicate that the proposed ANNs models can satisfactorily predict the surface roughness in EDM. Moreover, they can be considered as valuable tools for the process planning for EDMachining.  相似文献   

14.
In this study, an artificial neural network (ANN) structure is proposed for seasonal time series forecasting. The proposed structure considers the seasonal period in time series in order to determine the number of input and output neurons. The model was tested for four real-world time series. The results found by the proposed ANN were compared with the results of traditional statistical models and other ANN architectures. This comparison shows that the proposed model comes with lower prediction error than other methods. It is shown that the proposed model is especially convenient when the seasonality in time series is strong; however, if the seasonality is weak, different network structures may be more suitable.  相似文献   

15.
An inversion of linked radiative transfer models (RTM) through artificial neural networks (ANN) was applied to MODIS data to retrieve vegetation canopy water content (CWC). The estimates were calibrated and validated using water retrievals from AVIRIS data from study sites located around the United States that included a wide range of environmental conditions. The ANN algorithm showed good performance across different vegetation types, with high correlations and consistent determination coefficients. The approach outperformed a multiple linear regression approach used to independently retrieve the same variable. The calibrated algorithm was then applied at the MODIS 500 m scale to follow changes in CWC for the year 2005 across the continental United States, subdivided into three vegetation types (grassland, shrubland, and forest). The ANN estimates of CWC correlated well with rainfall, indicating a strong ecological response. The high correlations suggest that the inversion of RTM through an ANN provide a realistic basis for multi-temporal assessments of CWC over wide areas for continental and global studies.  相似文献   

16.
A critical issue in software project management is the accurate estimation of size, effort, resources, cost, and time spent in the development process. Underestimates may lead to time pressures that may compromise full functional development and the software testing process. Likewise, overestimates can result in noncompetitive budgets. In this paper, artificial neural network and stepwise regression based predictive models are investigated, aiming at offering alternative methods for those who do not believe in estimation models. The results presented in this paper compare the performance of both methods and indicate that these techniques are competitive with the APF, SLIM, and COCOMO methods.  相似文献   

17.
Artificial neural networks (ANNs) have been widely used to model environmental processes. The ability of ANN models to accurately represent the complex, non-linear behaviour of relatively poorly understood processes makes them highly suited to this task. However, the selection of an appropriate set of input variables during ANN development is important for obtaining high-quality models. This can be a difficult task when considering that many input variable selection (IVS) techniques fail to perform adequately due to an underlying assumption of linearity, or due to redundancy within the available data.This paper focuses on a recently proposed IVS algorithm, based on estimation of partial mutual information (PMI), which can overcome both of these issues and is considered highly suited to the development of ANN models. In particular, this paper addresses the computational efficiency and accuracy of the algorithm via the formulation and evaluation of alternative techniques for determining the significance of PMI values estimated during selection. Furthermore, this paper presents a rigorous assessment of the PMI-based algorithm and clearly demonstrates the superior performance of this non-linear IVS technique in comparison to linear correlation-based techniques.  相似文献   

18.
This paper deals with the wind speed prediction in wind farms, using spatial information from remote measurement stations. Owing to the temporal complexity of the problem, we employ local recurrent neural networks with internal dynamics, as advanced forecast models. To improve the prediction performance, the training task is accomplished using on-line learning algorithms based on the recursive prediction error (RPE) approach. A global RPE (GRPE) learning scheme is first developed where all adjustable weights are simultaneously updated. In the following, through weight grouping we devise a simplified method, the decoupled RPE (DRPE), with reduced computational demands. The partial derivatives required by the learning algorithms are derived using the adjoint model approach, adapted to the architecture of the networks being used. The efficiency of the proposed approach is tested on a real-world wind farm problem, where multi-step ahead wind speed estimates from 15 min to 3 h are sought. Extensive simulation results demonstrate that our models exhibit superior performance compared to other network types suggested in the literature. Furthermore, it is shown that the suggested learning algorithms outperform three gradient descent algorithms, in training of the recurrent forecast models.  相似文献   

19.
利用小波变换与神经网络相结合的方法,采用“能量-故障”特征提取方法和BP算法,提出了一种基于小波分析和神经网络的数字电路瞬态电流IDDT故障诊断方法。该方法首先采样电源到地的瞬态电流IDDT,然后通过小波分析提取电路的故障特征向量,最后输入到神经网络进行故障诊断。经过计算机软件对故障进行仿真,结果表明使用小波-神经网络的数字电路IDDT方法行之有效。  相似文献   

20.
In this paper we present an application of the neural network technology for the assessment of pipes with interacting defects. Finite element simulations are carried out on a pipe containing two aligned and equally shaped defects of 80 × 32 mm and various defect spacing, providing a database containing the relation between the failure pressures of pipes with multiple and single defects. Neural networks are conceived by using this database, establishing interaction rules and a pipe assessment of interacting defects in the longitudinal and circumferential directions. The neural networks results are compared with those derived from the Det Norske Veritas code (DNV RP-F101).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号