首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
为了探究Si元素含量对CoCrFeNiSix(x=0.5,1.0,1.5)高熵合金涂层的组织与性能的影响,采用激光熔覆技术制备高熵合金涂层,通过X射线衍射仪、扫描电子显微镜、能谱仪、显微硬度仪、摩擦磨损试验机、电化学工作站等表征了涂层的物相组成、微观组织以及元素分布、硬度值、耐磨性能和耐腐蚀性能. 研究表明,随着Si元素的含量增加,合金物相由单相面心立方结构转变为面心立方结构、Si元素化合物(σ)相结构,最后形成面心立方结构、体心立方结构和σ相混合结构.涂层的组织主要由柱状晶转变成树枝晶,最后形成胞状晶;同时,涂层的硬度不断提高,当Si含量为1.5时,涂层的平均硬度值达到最高,为619.04 HV0.2,约为基体的2.67倍.涂层的磨损量、摩擦系数随着Si含量的增加而减少,耐磨性能显著提高.涂层在3.5%NaCl溶液中腐蚀性能随着Si含量的增加先增加后降低,当Si含量为1.0时,涂层的耐腐蚀性能最优.  相似文献   

2.
为了探究激光熔覆工艺对高熵合金组织和性能的影响,使用激光熔覆技术在Q235基材表面制备不同熔覆工艺下的高熵合金涂层. 利用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪等对高熵合金涂层进行显微组织形貌的观察及物相分析;利用显微硬度计、摩擦磨损试验机对涂层的硬度及耐磨性进行研究. 结果表明,宏观形貌上,扫描速度一定时,激光功率增大,涂层宽度增加,涂层表面更加平整; 激光功率一定时,扫描速度增加,熔覆层的宽度减小,相结构主要由体心立方(BCC)和面心立方(FCC)组成,扫描速度的增大或激光功率的降低,涂层中的晶粒变细小,且部分区域的胞状晶有向树枝晶生长的趋势,涂层硬度明显高于基材,最高可以达到553 HV,耐磨性要优于基体.  相似文献   

3.
采用激光熔覆技术制备FeCrNiCoMnB_x高熵合金涂层,研究了硼含量对激光熔覆FeCrNiCoMnB_x高熵合金涂层的组织结构、硬度和摩擦磨损性能的影响,以及硼化物中层错形成机制。结果表明:涂层均由简单fcc结构固溶体和硼化物两相组成。当硼含量x≤0.75时,生成的硼化物以(Cr,Fe)_2B相为主;而当硼含量x=1时,生成大量的(Fe,Cr)_2B相。随着硼含量的增加,涂层中的硼化物含量增加,硬度增大,耐磨性能增强。硼化物(Fe,Cr)_2B相在(110)面存在大量堆垛层错。硼化物中的层错是(Fe,Cr)_2B相通过(110)面的层错(滑移距离为1/4[111])方式而向(Cr,Fe)_2B相转变而产生。  相似文献   

4.
采用额定功率为3 kW的Nd:YAG固体激光器在45钢表面激光熔覆制备了FeCoNiCrAl高熵合金,通过光学显微镜(OM)、扫描电镜、显微硬度计和电化学工作站等研究了试样的组织、成分、硬度和耐腐蚀性能。结果表明:由于激光能量空间的非均匀分布及熔池与基体之间换热等的非均匀性,激光熔覆高熵合金与基体的交界面为波浪形;由于过冷度的差异,在熔覆区域靠近中心的组织为等轴晶,熔覆层与基体交界的组织为柱状枝晶;由于激光熔覆过程的快速加热和冷却综合影响,完全相变区组织为马氏体与残留奥氏体;由于激光熔覆晶粒细化和Al元素引起的晶格畸变等综合影响,熔覆区域硬度是基体的2~3倍。  相似文献   

5.
介绍了激光熔覆高熵合金涂层的硬度、耐蚀性、热稳定性及抗高温氧化性等性能。总结了合金元素对高熵合金涂层性能的影响。阐述了激光熔覆技术制备高熵合金涂层近些年的研究进展,并且指出了该技术制备涂层所存在的问题以及未来展望,以期制备出性能优异的高熵合金涂层。  相似文献   

6.
7.
激光熔覆技术具有高的冷却速度、低的稀释率、涂层与基体冶金结合等优点,采用激光熔覆技术制备耐磨性和耐腐蚀好的高熵合金涂层是近几年高熵合金领域的研究热点之一。首先概括了激光熔覆技术制备的高熵合金体系及组织结构特征,大多高熵合金涂层以固溶相为主,少数合金涂层形成了非晶相,与熔炼制备高熵合金块体材料相比,涂层组织具有均匀、细小致密等特点。然后介绍了涂层的性能特征,涂层具有较高的硬度、良好的耐磨性,同时指明高耐磨性涂层不仅具有高的硬度,同时还需要具有一定的塑韧性。涂层合金中大多包含有Al、Cr、Si和Co等形成稳定氧化膜的元素,呈现优异的抗腐蚀性能。随后重点概述了合金元素(Al、Mo、V、Ti、B、Ni、Nb和Cu等)、熔覆工艺参数(激光功率、扫描速度和预制层粉末厚度)和热处理工艺对涂层组织结构和性能的影响规律。其中,熔覆工艺参数对涂层组织结构和性能的影响研究相对较少,将是未来研究的重点内容之一。最后对激光熔覆技术制备高熵合金涂层存在的问题和未来的研究方向做了展望。  相似文献   

8.
利用激光熔覆技术制备的高熵合金涂层已成为一种新兴的绿色清洁耐腐蚀涂层.为了最大程度发挥高熵合金涂层的耐腐蚀防护性能,需要探究激光熔覆高熵合金涂层耐腐蚀性能的影响因素及影响机理.首先阐述了高熵合金理论以及利用激光熔覆技术制备高熵合金涂层的优势,总结了高熵合金激光熔覆涂层优异耐腐蚀特性及耐腐蚀强化机理.重点综述了高熵合金元素组成、激光熔覆工艺参数、涂层后处理工艺以及服役温度4个因素,对高熵合金激光熔覆涂层耐腐蚀性能的影响规律与影响机理.高熵合金中适当添加Ni、Al、Ti等元素,在一定程度上可以提高涂层的耐腐蚀性,但是随着元素含量的进一步增加,由于高熵合金涂层的物相组成改变、晶格畸变严重、元素偏析加剧,可能导致涂层的耐腐蚀性能降低.适宜的激光加工参数可以使涂层具有较好的耐腐蚀性,原因在于涂层的缺陷较少、组织细密均匀.退火、激光重熔、超声冲击处理等涂层后处理工艺,通过改变高熵合金涂层的物相组成以及微观组织特征,来提高其耐腐蚀性.激光熔覆高熵合金涂层的服役环境温度越高,则腐蚀速率越快.最后,对激光熔覆高熵合金涂层的耐腐蚀性能强化方法进行了总结与展望.  相似文献   

9.
采用激光熔敷技术在45号钢表面制备不同SiC含量的FeCoCrNiB/SiC高熵合金涂层。研究退火温度对FeCoCrNiB/SiC涂层组织结构、硬度和耐磨性的影响。结果表明:未加SiC时,涂层由简单FCC固溶体和柳叶状Cr2B相组成。加入SiC后涂层中基体仍然为简单FCC固溶体,但基体内部出现了条状碳化物M7C3和方块状硼化物Fe2B。随着SiC添加量的增加,FeCoCrNiB/SiC涂层析出碳化物和硼化物颗粒尺寸显著变小,碳化物含量逐渐增多,涂层硬度和耐磨损性显著提高。FeCoCrNiB/SiC涂层经过高温退火后相结构较稳定,但组织有一定程度的粗化。添加10wt%SiC的涂层在900 ℃高温退火后硬度下降仅4 %,具有良好的抗高温软化特性。添加SiC颗粒改变了FeCoCrNiB涂层的磨损机制,抑制了涂层的氧化磨损。FeCoCrNiB/SiC涂层经900 ℃高温退火后仍保持良好的耐磨损性能。  相似文献   

10.
利用激光熔覆技术在316L不锈钢表面制备了FeCrNiCoMoCuBSi高熵合金涂层,分析了其组织结构、硬度、摩擦磨损、电化学腐蚀和腐蚀磨损性能。结果表明,熔覆层成型良好,表面无裂纹、气孔等缺陷。熔覆层主要由FCC固溶体相组成,微观组织以“柳条状”树枝晶为主,结合区为平面晶,与基体呈良好的冶金结合。熔覆层的平均硬度为700 HV0.2,约为基材的3.5倍。熔覆层在不同载荷下的摩擦系数均低于基材,磨损量小于基材,表现出明显优于基材的耐磨性。在3.5wt% NaCl溶液中,熔覆层自腐蚀电流密度为4.74×10-8A.cm-2,低于基材两个数量级,耐蚀性优异。在摩擦载荷与腐蚀耦合作用下,熔覆层开路电位发生负偏移,腐蚀倾向增大。随摩擦载荷增大,自腐蚀电位负移,自腐蚀电流密度增大,摩擦促进腐蚀作用增大。  相似文献   

11.
利用激光熔覆技术制备了AlCrCoFeNiMoTi0.75Si0.25高熵合金涂层刀具,研究了激光快速凝固和经过1 000℃退火处理的AlCrCoFeNiMoTi0.75Si0.25高熵合金涂层微观组织和硬度、摩擦磨损性能,并比较了普通高速钢及高熵合金涂层刀具的切削加工性能。结果表明:激光熔覆AlCrCoFeNiMoTi0.75Si0.25高熵合金涂层的主要相结构为bcc相,涂层具有较好的高温稳定性。激光熔覆高熵合金涂层刀具表面硬度高,摩擦因数小,断屑效果好,被加工材料表面光洁度高。  相似文献   

12.
为提高钛合金的摩擦磨损和高温抗氧化性能,采用激光熔覆技术在Ti6Al4V(TC4)钛合金表面制备了近等原子比的AlCoCrFeMoVTi高熵合金(HEA)涂层。借助X射线衍射(XRD)、扫描电镜(SEM)、能谱仪(EDS)等分析了涂层的物相组成和显微组织;利用HDX-1000维氏硬度仪测试了熔覆层显微硬度;通过UMT-3摩擦磨损试验机和GSL-1400X型管式电阻炉分别测试了HEA涂层的摩擦磨损性能和高温抗氧化性能。结果表明,HEA涂层主要由面心立方(fcc)、体心立方(bcc)二元共晶相组成;HEA涂层最高显微硬度HV0.2为10 990 MPa,是基体TC4的3.29倍;涂层摩擦系数为0.31,磨损体积为1.79×10~(-4)mm~3,分别为基体的59.62%和12.01%;在800℃恒温下氧化50h后,HEA涂层的氧化增重为1.49 mg,仅为基体的16.37%。激光熔覆高熵合金AlCoCrFeMoVTi涂层能显著改善Ti6Al4V钛合金的摩擦磨损和高温抗氧化性能。  相似文献   

13.
采用激光熔覆的方法制备AlCoCrFeNiMox高熵合金涂层。研究Mo元素含量对涂层微观结构、硬度及耐腐蚀性的影响。结果表明,随着Mo含量的增加,微观组织从富(Al, Ni)的体心立方(bcc)相和富(Mo-Cr-Fe)的σ相,转变为富(Fe, Ni)的bcc相、富(Mo-Cr-Fe)的σ相、富(Al-Fe-Mo)的σ相与少量AlN相。此外,涂层的显微硬度(HV1)从6154.4 MPa增加到10652.6 MPa。随着Mo含量的添加,涂层在3.5%(质量分数)氯化钠溶液中的自腐蚀电位升高,当Mo含量为x=1.0时,涂层的耐腐蚀性能最好。  相似文献   

14.
采用激光熔覆技术在 45 钢基体上制备了不同碳含量(等摩尔比)的 CoCrFeMnNiCx( x = 0,0. 03,0. 06,0. 09, 0. 12,0. 15)高熵合金涂层。 通过 X 射线衍射(XRD)、扫描电镜( SEM)、HVS-1000A 型显微硬度计、RST5000 型电化学工作站、UMT-2 型摩擦磨损试验机等表征和测试手段研究了不同碳含量对激光熔覆 CoCrFeMnNiCx 高熵合金涂层物相结构、显微硬度、摩擦磨损及耐腐蚀性能的影响。 结果表明,当碳含量 x 由 0 逐渐增加至 0. 09 时,高熵合金相结构由 FCC 固溶体转变为 FCC 固溶体和 M23C6 相共存,合金微观组织变得细小;熔覆层硬度由 183. 20 HV0. 2 增加至 223. 48 HV0. 2 ; 涂层的摩擦因数降低,耐磨性能变强;腐蚀电位由-469 mV 增大至-348 mV,腐蚀电流密度由 14. 95 μA·cm-2 减小为 2. 29 μA·cm-2 ,耐腐蚀性增强。 当碳含量 x 由 0. 09 逐渐增加至 0. 15 时,合金相结构再次转变为 FCC 固溶体,且合金微观组织恢复粗大状态;熔覆层硬度与耐腐蚀性降低,但耐磨性能却先减弱后增强。 合金在碳含量为 0. 09 时,硬度最高且耐腐蚀性能最强;在碳含量为 0. 15 时,耐磨性最强。  相似文献   

15.
激光熔覆FeCoNiCrAl_2Si高熵合金涂层   总被引:8,自引:0,他引:8  
研究了激光熔覆后经600—1000℃退火处理的FeCoNiCrAl_2Si高熵合金涂层的组织和性能.结果表明,激光熔覆过程中的快速凝固条件有利于抑制涂层中金属间化合物的析出,涂层具有bcc结构,为有序固溶体,具有较高的硬度(900 HVo 5),相结构和硬度的高温稳定性好;涂层组织为树枝晶,Fe,Cr和Si在枝晶间富集,而Ni,Co和Al在枝晶中富集.随退火温度升高,Al和Si的偏析程度加剧,而其余元素的偏析变化不明显.EBSD研究显示熔覆态涂层的枝晶和枝晶间界面分布有大量小角度晶界,经600℃退火5 h后小角度晶界转变为大角度晶界,晶粒被细化.  相似文献   

16.
以热作模具钢H13作为基体,通过激光熔覆制备AlCoCrFeNiWx(x=0, 0.5)高熵合金涂层,并研究W元素的添加对其组织结构以及热稳定性和耐磨性的影响。激光熔覆AlCoCrFeNiWx高熵合金涂层相组织结构随W元素的添加会发生变化,W的添加会促进BCC相的形成,并且在晶界处形成富含W的第二相,其生长方向会沿着冷却方向形成细长状的枝晶,这些第二相会起到耐磨和强化涂层的作用。经800 ℃长时间保温后测试AlCoCrFeNiWx高熵合金涂层的热稳定性。结果表明,AlCoCrFeNiWx高熵合金涂层均能够保持较高的硬度和耐磨性,14 h保温后的硬度仍大于400 HV0.2,加入W元素后的涂层抗回火软化能力更强,800 ℃保温14 h后的耐摩擦磨损性能是基体的两倍以上。  相似文献   

17.
《硬质合金》2019,(4):321-327
高熵合金凭借特有的合金设计理念和优异的性能,展现了在工业生产中巨大的应用潜力,已成为研究学者关注的焦点。本文概括了高熵合金的设计准则和性能特性,分析了高熵合金相形成及其规律,阐述了合金元素对激光熔覆高熵合金耐磨性能研究进展,同时,探讨了热处理对激光熔覆高熵合金耐磨性能研究进展。展望了激光熔覆高熵合金涂层未来的研究发展方向。  相似文献   

18.
使用激光熔覆技术在Q235钢基体上制备AlxNbMn2FeMoTi0.5高熵合金涂层,期望借此提高干切削技术适用刀具表层的硬度和耐磨性.经过初步筛选之后,主要研究了AlxNbMn2FeMoTi0.5(x=1、1.5、2)高熵合金涂层体系,并采用XRD和3D激光扫描成像等手段分析了不同Al含量的AlxNbMn2FeMoT...  相似文献   

19.
目的研究AlB_xCoCrNiTi(x=0、0.5、1)高熵合金涂层的组织及性能,提高钛合金表面硬度及耐磨性。方法采用激光熔覆技术在TC4钛合金表面制备出AlB_xCoCrNiTi高熵合金涂层,运用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、电子探针(EPMA)等材料分析手段,研究了B含量对高熵合金涂层形貌、组织结构、成分的影响,并采用维氏硬度计以及摩擦磨损试验检测了熔覆涂层的硬度和耐磨性能。结果高熵合金涂层与基体的整体结合形貌良好。未添加B的高熵合金涂层主要由BCC相和晶体结构类似(Co,Ni)Ti_2相组成。随着B的加入,高熵合金涂层的晶粒得到细化,BCC相含量增加,(Co,Ni)Ti_2相含量有所减少,且熔覆层原位生成了TiB_2硬质相,TiB_2硬质相含量随B含量的增加而增加。熔覆涂层的硬度和耐磨性与B含量呈正相关关系,AlB_1CoCrNiTi高熵合金涂层的平均显微硬度最大,为814HV,且AlB_1CoCrNiTi高熵合金涂层的磨损量最小,其耐磨性约为未添加B的高熵合金涂层的7倍。结论 B含量的增加,有助于改善AlB_xCoCrNiTi高熵合金涂层的摩擦学性能,AlB_xCoCrNiTi高熵合金涂层有效提高了钛合金表面的硬度及耐磨性能。  相似文献   

20.
王永东  宫书林  汤明日  宋闽 《焊接学报》2023,(8):116-122+136
为了探究激光熔覆工艺对高熵合金组织和性能的影响,使用激光熔覆技术在Q235基材表面制备不同熔覆工艺下的高熵合金涂层.利用光学显微镜(OM)、扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪等对高熵合金涂层进行显微组织形貌的观察及物相分析;利用显微硬度计、摩擦磨损试验机对涂层的硬度及耐磨性进行研究.结果表明,宏观形貌上,扫描速度一定时,激光功率增大,涂层宽度增加,涂层表面更加平整;激光功率一定时,扫描速度增加,熔覆层的宽度减小,相结构主要由体心立方(BCC)和面心立方(FCC)组成,扫描速度的增大或激光功率的降低,涂层中的晶粒变细小,且部分区域的胞状晶有向树枝晶生长的趋势,涂层硬度明显高于基材,最高可以达到553 HV,耐磨性要优于基体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号