首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
通过在Mg-10Gd-2Y-0.5Zr合金中添加Zn,采用SEM、XRD及万能拉伸试验机,研究了Zn添加对其铸态组织和力学性能的影响。结果表明,Mg-10Gd-2Y-0.5Zr合金的铸态组织主要由α-Mg、Mg5(Gd,Y)和Mg24(Y,Gd)5相组成,而添加质量分数为0.5%~1.5%的Zn后,合金的铸态组织主要由α-Mg、Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5及Mg12(Gd,Y)Zn相组成。添加0.5%的Zn后,合金的室温力学性能明显提高,当Zn含量高于1.0%后,镁合金的室温力学性能开始逐步降低。当Zn含量为0.5%时,合金具有较佳的综合力学性能,其抗拉强度、屈服强度和伸长率分别为197 MPa、160 MPa和4.37%。Zn对Mg-10Gd-2Y-0.5Zr合金铸态力学性能的影响与其铸态组织中Mg5(Gd,Y,Zn)、Mg24(Y,Gd,Zn)5和Mg12(Gd,Y)Zn第二相及其数量有关。  相似文献   

2.
为解决因残余应力、组织不均匀性、成分偏析所造成的铸态Mg-3Zn-0.8Zr-1Y(mass%)合金性能不佳的问题,对其进行了固溶和时效处理,研究了热处理工艺对其显微组织、力学性能及耐腐蚀性能的影响。结果表明:Mg-3Zn-0.8Zr-1Y合金的最优热处理工艺是480℃均匀化退火12 h后520℃固溶处理12 h,最后在170℃时效24 h。均匀化退火处理缓解了铸态合金中的偏析现象,固溶处理使铸态合金中的W(Mg3Y2Zn3)相基本融入α-Mg基体中形成过饱和固溶体,时效后组织中析出细小且弥散分布的纳米级短杆状Mg2Zn3和颗粒状Mg4Zn7第二相。与铸态合金相比,经最优工艺处理后合金的硬度、极限抗拉强度、屈服强度和伸长率分别提升到83.4 HV、204 MPa、139 MPa和12.5%,自腐蚀电位提高到-1.793 V(vs.SCE)、腐蚀电流密度降低到59.64μA/cm2,腐蚀速率降低到1.36 mm/y...  相似文献   

3.
以真空熔炼方法制备的AZ91-xCu(x=0、0.5、1、2)合金为研究对象,对其进行400 ℃保温12 h固溶处理,利用X射线衍射、扫描电镜、浸泡失重法及极化曲线测试等手段对合金的微观结构和腐蚀性能进行了研究。结果表明:铸态与固溶态AZ91-xCu合金基体主要由α-Mg与β-Mg17Al12相组成,Cu的添加使基体产生了Mg2Cu、Cu5Zn8等相,其中固溶态AZ91-2Cu合金中出现了新相Al2Cu;固溶处理时合金中的β-Mg17Al12相大量溶入基体,晶界明显,剩余第二相主要分布于晶界处,少量弥散分布于晶内;添加Cu与固溶处理均加快AZ91合金的腐蚀速率,其中固溶态AZ91-2Cu合金腐蚀速率最大。  相似文献   

4.
探究了复合添加微量Sn与Ca对挤压态Mg-0.5Bi基合金的微观组织、力学性能及腐蚀行为的影响。结果表明:挤压态Mg-0.5Bi-0.5Sn-0.5Ca (质量分数,%)合金主要由α-Mg、Mg2Bi2Ca以及Mg2Sn相组成,合金表现出晶粒尺寸均匀分布的完全动态再结晶组织。合金的抗拉强度(UTS)为191 MPa,伸长率(EL)高达31.5%,腐蚀速率(Pi)为0.51 mm/a,极化阻抗(Rp)为707.19Ω·cm2。此外,挤压态合金在腐蚀过程中生成了含Ca以及含Sn的腐蚀产物中间层,从而提升了腐蚀产物层的保护作用,导致析氢速率随着浸泡时间的增加先增大后减小。最后由于腐蚀产物膜的破裂,析氢速率达到了2.43 mL/d。  相似文献   

5.
以Mg-4Zn-0.5Ca合金为研究对象,研究了Cu对Mg-4Zn-0.5Ca合金组织及力学性能的影响。结果表明,Cu可以通过与Zn原子结合形成Mg-Zn-Cu三元相在α-Mg基体边界富集,阻碍基体长大,使Mg-4Zn-0.5Ca合金铸态组织得到细化,合金主要由α-Mg,Ca2Mg6Zn3,Mg Zn Cu相组成。Cu元素可以提高Mg-4Zn-0.5Ca合金的硬度及抗拉强度,当Cu含量为1%时,铸态Mg-4Zn-0.5Ca-1Cu合金的抗拉强度和屈服强度分别为149 MPa、102 MPa,相对于基本合金提高了14.6%和29.1%,合金硬度提高18.8%至63 HV。过量的Cu会使合金中的析出相呈连续的网状分布在晶界上,导致力学性能的下降。  相似文献   

6.
采用熔炼工艺制备了Mg-2.0Zn-0.2Ca与Mg-2.0Zn-0.2Ca-2Y合金,研究了两种合金的铸态组织及力学性能。结果表明,Y元素的添加细化了Mg-2.0Zn-0.2C合金的铸态组织。Mg-2.0Zn-0.2Ca合金主要由α-Mg与少量Mg7Zn3相组成,添加2wt%的Y后,改变了Zn在Mg基体中的固溶度,降低了其固溶强化效果,同时组织中形成了I相和W相。添加Y元素后,合金的规定塑性延伸强度升高,从41.0 MPa升高到50.6 MPa;伸长率降低,从12.6%降低到4.0%。  相似文献   

7.
Al-6.3Zn-2.8Mg-1.8Cu铸造铝合金的组织和室温力学性能   总被引:1,自引:0,他引:1  
研究了Al-6.3Zn 2.8Mg-1.8Cu铸造铝合金的组织和室温力学性能.研究表明,在金属型铸造条件下,Al-6.3Zn-2.8Mg-1.8Cu合金的铸态组织为近等轴晶,相组成为α(Al)基体、枝晶间α(Al)+η(MgZn2)共晶、晶内游离η相(MgZn2)、少量T相(Mg3ZnxCu3-xAl2)及少量颗粒状Al7Cu2Fe.固溶处理后,原铸态组织中的η(MgZn2)相大部分溶解消失,但形成新的沿晶界分布的S相(Al2CuMg).实验确定了固溶态Al-6.3Zn-2.8Mg-1.8Cu合金较优的单级和双级时效工艺.与单级时效工艺相比,采用双级时效工艺处理后,抗拉强度由480 MPa增加至490 MPa,延伸率由0.2%增加至2.2%.  相似文献   

8.
将稀土元素Nd添加到Mg-2Zn-3Sn合金中,采用金属型铸造制备了Mg-2Zn-3Sn-xNd(x=0, 0.5, 1, 2,质量分数,%)合金,采用光学显微镜(OM)、扫描电镜(SEM)及X射线衍射(XRD)等分析了铸态Mg-2Zn-3Sn-xNd合金的微观组织,应用电化学测试和Hank’s溶液静态浸泡测试研究了其耐腐蚀性能。结果表明,铸态Mg-2Zn-3Sn-xNd合金由α-Mg相、MgSnNd相、Mg2Sn相和少量的MgZn相组成。与Mg-2Zn-3Sn合金相比,Mg-2Zn-3Sn-xNd合金的晶粒得到明显细化。少量Nd(0.5%、1%)可提高Mg-2Zn-3Sn合金的耐腐蚀性,但当Nd的添加量较高时(2%),电偶腐蚀加剧,合金的耐腐蚀性能降低。Mg-2Zn-3Sn-0.5Nd合金的耐腐蚀性能最佳,说明适量Nd可改善Mg-2Zn-3Sn合金的耐腐蚀性。  相似文献   

9.
研究挤压态和时效态Mg-6Al-3Sn-2Zn(ATZ632)合金的显微组织和力学性能。挤压态ATZ632合金表现出优异的力学性能,其屈服强度(YS)、极限抗拉强度(UTS)和伸长率(EL)分别为216.4 MPa、344.3 MPa和18.4%。经时效处理后,Mg17Al12析出相体积分数增加且出现Mg4Zn7相,Mg17Al12相平行于基面,Mg4Zn7垂直于α-Mg的(0001)面析出,从而使时效态ATZ632合金的YS和UTS分别增加到252.5和416.2 MPa;但EL下降至10.1%。经过150℃较低温度时效处理后,合金中出现静态再结晶晶粒,且静态再结晶晶粒的c轴垂直于挤压方向,其取向呈高度一致性。  相似文献   

10.
刘欢  薛烽  白晶  周健  孙扬善 《金属学报》2013,(2):236-242
制备并研究了Mg-(2,3,4)Y-1Zn(原子分数,%)三元合金在铸态、退火、挤压和固溶处理时的显微组织和力学性能.结果表明,随着Y/Zn原子比的升高,铸态合金的显微组织由WZ21和WZ31合金的两相组织(α-Mg+Mg12YZn)转变为WZ41合金的三相组织(α-Mg+Mg12YZn+Mg24Y5).其中Mg12YZn相连接成网状,为18R-LPSO结构,Mg24Y5相分布于Mg12YZn相之间.退火时,WZ21和WZ31合金中部分18R相溶解,基体中析出大量14H-LPSO层片.经过挤压,18R-LPSO相沿挤压方向呈带状排列,退火析出的14H层片整体平动,在α-Mg中仍相互平行.固溶处理后,18R相继续溶解,14H相析出并长大.此时,随Y/Zn原子比升高,合金中14-LPSO相体积分数增加.3种合金挤压态的性能优于相应的铸态、退火态和固溶处理态,随着Y含量的增加,合金强度不断升高,塑性下降,挤压态WZ41合金在室温时抗拉强度达到350 MPa以上.  相似文献   

11.
采用OM、SEM、EDS、TEM和SAED等技术研究了Mg-12Gd-2Y-0.5Sm-0.5Sb-0.5Zr合金在铸态、时效态及固溶态的显微组织变化。结果表明,与铸态合金显微组织相比,时效态合金析出相更加细小弥散;铸态合金析出相有α-Mg、Mg5Gd相和Mg24Y5相,固溶态有α-Mg、Mg3Gd相和Mg24Y5相,时效态有α-Mg,Mg41Sm5,β'相。β'相形态为多个纺锤形相联结而成,相互夹角呈120°,具有周期结构。  相似文献   

12.
研究了固溶处理对Mg-6Al-3Zn-0.25Mn铸造镁合金显微组织和力学性能的影响。结果表明,铸态和固溶态组织主要由α-Mg基体和Mg17Al12相组成,经过400、410和420℃保温18 h固溶处理后,第二相的种类没有发生变化,大量的Mg17Al12相溶入到α-Mg基体中,合金组织中残留了少量颗粒状Al4Mn相,同时也出现了梅花状Mg17Al12相。此外,合金经400℃×18 h处理后,晶粒细化程度最好,且表面清晰平整无缺陷,其室温力学性能得到了明显改善,抗拉强度、屈服强度和伸长率分别达到了184.1 MPa、135.5 MPa和8.9%。  相似文献   

13.
采用光学显微镜、扫描电镜、透射电镜、X射线衍射仪、维氏硬度测试仪和万能力学试验机等研究了固溶和时效热处理对铸造Mg-5Y-2Nd-3Sm-0.5Zr合金组织与力学性能的影响。结果表明:铸态合金组织主要由α-Mg基体,Mg24Y5、Mg41Nd5和Mg41Sm5相组成;经固溶处理,铸态合金中粗大的第二相固溶于α-Mg基体中,时效处理后有新的纳米级第二相析出;铸造Mg-5Y-2Nd-3Sm-0.5Zr合金的最佳热处理工艺为525℃下保温10 h,然后225℃下时效处理12 h,热处理后合金具有最优良的力学性能,硬度、抗拉强度、屈服强度和伸长率分别为124.8 HV,296.9 MPa,255.4 MPa和5.78%。  相似文献   

14.
采用光学显微镜、扫描电镜、能谱分析、X射线衍射和拉伸试验等方法,研究了Mg-1Gd-0.6Zr和Mg-1Nd-0.6Zr镁合金在铸态、挤压态和时效态的室温组织和力学性能。结果表明,Mg-1Gd-0.6Zr和Mg-1Nd-0.6Zr合金平均晶粒尺寸小于Mg-0.6Zr合金的晶粒尺寸,由300μm分别细化为100μm和80μm左右,晶界上分别有少量的颗粒状Mg5Gd相和不规则形状的Mg41Nd5、Mg12Nd相。挤压态Mg-1Gd-0.6Zr和Mg-1Nd-0.6Zr合金出现了变形晶粒和动态再结晶晶粒构成的双峰组织,时效后双峰组织更加明显。时效态Mg-1Nd-0.6Zr合金的力学性能最好,抗拉强度为201.71 Mpa,比挤压态高3.6%,比铸态高23%,比时效态Mg-1Gd-0.6Zr合金高2%。时效态Mg-1Nd-0.6Zr合金的伸长率为29.2%,比挤压态高4.3%,比铸态高46%,比时效态Mg-1Gd-0.6Zr合金高15.4%。  相似文献   

15.
Mg—Gd—Ag—Zr合金的组织与力学性能   总被引:1,自引:1,他引:0  
对Mg-18.6Gd-1.9Ag-0.24Zr合金铸态、T4态和T6态的显微组织和力学性能进行了研究.结果表明,该合金铸态时由α-Mg与分布在晶界的Mg5Gd相组成;T4态时由过饱和α-Mg固溶体和H2Gd相组成;峰值时效态的析出相为β相.该合金具有明显的时效强化效果,在200、225、250℃温度下的时效处理结果发现,随着时效温度的升高,合金的峰值时效硬度下降,到达峰值硬度的时间大为缩短.其中200℃下的峰值时效硬度(HV)最高,达到了134.合金经过200℃的峰值时效处理后具有最高的室温力学性能,屈服强度、抗拉强度和伸长率分别为291.0 MPa、383.5 MPa和1.17%.  相似文献   

16.
采用光学显微镜、扫描电镜、动态热分析仪和X射线衍射仪研究了固溶时效处理对Mg-4Zn-0.3Zr合金显微组织和阻尼性能的影响。结果表明,铸态合金晶粒尺寸约121μm,晶界粗大且有MgZn、MgZn2和Mg7Zn3相分布;固溶处理后,晶界处的MgZn、MgZn2和Mg7Zn3相基本溶入基体;时效处理后,晶界处有少量的颗粒状MgZn和MgZn2相析出。在低应变振幅区,铸态合金阻尼性能最好,在高应变振幅区,固溶态阻尼性能最好,固溶+时效态合金阻尼曲线的斜率最大;3种状态合金在低温区的阻尼峰均由晶界阻尼峰和位错阻尼峰叠加构成,固溶态和固溶+时效态合金在高温区的阻尼峰为弛豫型阻尼峰。  相似文献   

17.
张莎  王武孝  申情  杜胜 《金属热处理》2020,45(2):202-206
采用金相显微镜、维氏硬度测试仪及扫描电镜等,研究热处理工艺对Al2O3f /Mg-6Al-0.5Nd-0.5Gd复合材料微观组织及硬度的影响。结果表明,固溶处理后β-Mgl7A112相大部分固溶于α-Mg基体中,而稀土化合物Al2Nd、Al2Gd相因其高熔点,在试验温度下不能分解与固溶,Al2O3f纤维变得细小均匀,Mg2Si相呈一定的分解、球化趋势。时效处理使β-Mgl7A112相再次析出,呈层片状或弥散颗粒状分布,优化了其铸态时粗大的网状结构,此时,复合材料硬度达到最大值,比铸态时提高了47.5%。  相似文献   

18.
采用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪和万能力学试验机等研究了固溶和时效处理对Mg-8Gd-3Y-1.5Zn-0.6Zr合金显微组织和力学性能的影响。结果表明,Mg-8Gd-3Y-1.5Zn-0.6Zr合金铸态、固溶态和时效态的显微组织均由α-Mg基体、Mg5(Gd, Y, Zn)相和LPSO结构组成;合金经固溶和时效处理后的最大抗拉强度由铸态的187.96 MPa提高到241.93 MPa,提高了28.71%,伸长率由铸态的8.48%提高到13.91%,提高了64.03%;不同热处理状态下合金的拉伸断口形貌主要以脆性断裂为主。  相似文献   

19.
利用扫描电子显微镜(SEM)和X射线衍射(XRD)等分析手段研究了Bi、Cr-Bi复合添加对Mg-8Al-4Zn合金铸态组织及时效沉淀相演变的影响。结果表明:Cr-Bi复合添加能有效改善合金的铸态组织,使连续网状相断开呈短杆或颗粒状。Bi、Cr-Bi复合添加的合金经350℃×12 h+160℃时效,其沉淀硬化曲线呈现典型的温时效。Cr-Bi复合添加的合金时效初期硬化速率较高,20 h就达到峰值硬度的97%,时效48 h达到峰值硬度92.44 HV,过时效阶段硬度下降速度比较缓慢。Mg-8Zn-4Al-0.5Bi合金经350℃×12 h+160℃×120 h时效后主要有MgZn2、Mg3Bi2和单Bi相,呈短杆或细小颗粒状弥散分布在基体上;Cr-Bi复合添加的合金经350℃×12 h+160℃×144 h时效后,除短杆或细小颗粒状的MgZn2相外还有Cr、Al12Cr3等沉淀相,没有发现粗大的MgZn相,且沉淀相与单独添加Bi经120 h时效的合金相比更加细小、致密、弥散均匀分布。  相似文献   

20.
以7A85铝合金结构壁板为研究对象,结合力学性能测试与微观组织分析,研究了分级时效热处理温度与时间对7A85铝合金结构壁板组织性能的影响。结果表明,7A85铝合金单级时效热处理析出相主要为Al2Cu相、Mg2Zn11相与G.P.Ⅱ区,与α-Al基体呈半共格关系,在保持较高强度的基础上兼具了良好的塑性。双级时效处理后合金析出相为Mg2Zn11相、Mg3.5Zn1.5相与MgZn2相,强化机制为G.P.Ⅱ区和Mg2Zn11析出相与α-Al基体的半共格晶格畸变强化,屈服强度与硬度有所上升,塑性随之下降。随着时效保温过程的持续进行,析出相转变为Mg2Zn11相、MgZn2相与Al2CuMg相,且MgZn2为主析出相,与α-Al基体的晶格关系转变为完全非共格,强度随之下降...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号