共查询到20条相似文献,搜索用时 15 毫秒
1.
Fuzzy multiple attributes group decision-making based on ranking interval type-2 fuzzy sets 总被引:2,自引:0,他引:2
Shyi-Ming Chen Ming-Wey YangLi-Wei Lee Szu-Wei Yang 《Expert systems with applications》2012,39(5):5295-5308
In this paper, we present a new method to deal with fuzzy multiple attributes group decision-making problems based on ranking interval type-2 fuzzy sets. First, we propose a new method for ranking interval type-2 fuzzy sets. Then, we propose a new method for fuzzy multiple attributes group decision-making based on the proposed ranking method of interval type-2 fuzzy sets. We also use some examples to illustrate the fuzzy multiple attributes group decision-making process of the proposed method. The proposed method is simpler than the methods presented in
[Chen and Lee, 2010a] and [Lee and Chen, 2010b] for fuzzy multiple attributes group decision-making based on interval type-2 fuzzy sets. It provides us with a useful way for dealing with fuzzy multiple attributes group decision-making problems based on interval type-2 fuzzy sets. 相似文献
2.
Advances in type-2 fuzzy sets and systems 总被引:3,自引:0,他引:3
Jerry M. Mendel 《Information Sciences》2007,177(1):84-110
3.
Türkay DereliAuthor VitaeAdil BaykasogluAuthor Vitae Koray AltunAuthor VitaeAlptekin DurmusogluAuthor Vitae I. Burhan TürksenAuthor Vitae 《Computers in Industry》2011,62(2):125-137
Data, as being the vital input of system modelling, contain dissimilar level of imprecision that necessitates different modelling approaches for proper analysis of the systems. Numbers, words and perceptions are the forms of data that has varying levels of imprecision. Existing approaches in the literature indicate that, computation of different data forms are closely linked with the level of imprecision, which the data already have. Traditional mathematical modelling techniques have been used to compute the numbers that have the least imprecision. Type-1 fuzzy sets have been used for words and type-2 fuzzy sets have been employed for perceptions where the level of imprecision is relatively high. However, in many cases it has not been easy to decide whether a solution requires a traditional approach, i.e., type-1 fuzzy approach or type-2 fuzzy approach. It has been a difficult matter to decide what types of problems really require modelling and solution either with type-1 or type-2 fuzzy approach. It is certain that, without properly distinguishing differences between the two approaches, application of type-1 and type-2 fuzzy sets and systems would probably fail to develop robust and reliable solutions for the problems of industry. In this respect, a review of the industrial applications of type-2 fuzzy sets, which are relatively novel to model imprecision has been considered in this work. The fundamental focus of the work has been based on the basic reasons of the need for type-2 fuzzy sets for the existing studies. With this purpose in mind, type-2 fuzzy sets articles have been selected from the literature using the online databases of ISI-Web of Science, ScienceDirect, SpringerLink, Informaworld, Engineering Village, Emerald and IEEE Xplore. Both the terms “type-2 fuzzy” and “application” have been searched as the main keywords in the topics of the studies to retrieve the relevant works. The analysis on the industrial applications of type-2 fuzzy sets/systems (FSs) in different topics allowed us to summarize the existing research areas and therefore it is expected be useful to prioritize future research topics. This review shows that there are still many opportunities for application of type-2 FSs for several different problem domains. Shortcomings of type-1 FSs can also be considered as an opportunity for the application of type-2 FSs in order to provide a better solution approach for industrial problems. 相似文献
4.
The uncertainty is an inherent part of real-world applications. Type-2 fuzzy sets minimize the effects of uncertainties that cannot be modeled using type-1 fuzzy sets. However, the computational complexity of the type-2 fuzzy sets is very high and it is more difficult than type-1 fuzzy sets to use and understand. This paper proposes sine-square embedded fuzzy sets and gives a comparison with type-2 and nonstationary fuzzy sets. The sine-square embedded fuzzy sets consist of type-1 fuzzy sets and the sine function. The footprint of uncertainty in the type-2 fuzzy sets is provided with amplitude and frequency of sine-square function in the proposed algorithm. The proposed sine-square embedded fuzzy sets are much simpler than the type-2 fuzzy sets and the nonstationary fuzzy sets. Two control applications that are chosen as position control of a dc motor and simulation of human lifting motion using five-segment human model are carried out to demonstrate the effectiveness of the proposed approach. 相似文献
5.
In this paper, we propose a new fuzzy multiattribute group decision making method based on intuitionistic fuzzy sets and the evidential reasoning methodology. First, the proposed method uses the evidential reasoning methodology to aggregate each decision maker’s decision matrix and the weights of the attributes to get the aggregated decision matrix of each decision maker. Then, it uses the obtained aggregated decision matrices of the experts, the weights of the experts and the evidential reasoning methodology to get the aggregated intuitionistic fuzzy value of each alternative. Finally, it calculates the transformed value of the obtained intuitionistic fuzzy value of each alternative. The smaller the transformed value, the better the preference order of the alternative. The proposed method can overcome the drawbacks of the existing methods for fuzzy multiattribute group decision making in intuitionistic fuzzy environments. 相似文献
6.
7.
Even though fuzzy logic is one of the most common methodologies for matching different kind of data sources, there is no study which uses this methodology for matching publication and patent data within a technology evaluation framework according to the authors’ best knowledge. In order to fill this gap and to demonstrate the usefulness of fuzzy logic in technology evaluation, this study proposes a novel technology evaluation framework based on an advanced/improved version of fuzzy logic, namely; interval type-2 fuzzy sets and systems (IT2FSSs). This framework uses patent data obtained from the European Patent Office (EPO) and publication data obtained from Web of Science/Knowledge (WoS/K) to evaluate technology groups with respect to their trendiness. Since it has been decided to target technology groups, patent and publication data sources are matched through the use IT2FSSs. The proposed framework enables us to make a strategic evaluation which directs considerations to use-inspired basic researches, hence achieving science-based technological improvements which are more beneficial for society. A European Classification System (ECLA) class – H01-Basic Electric Elements – is evaluated by means of the proposed framework in order to demonstrate how it works. The influence of the use of IT2FSSs is investigated by comparison with the results of its type-1 counterpart. This method shows that the use of type-2 fuzzy sets, i.e. handling more uncertainty, improves technology evaluation outcomes. 相似文献
8.
图像分割质量的评价是图像分割技术和算法研究的重要环节,在图像分析和计算机视觉中有着重要应用。依据二型模糊集在不精确性描述方面的独特优势,提出一种图像分割评判指标的二型模糊集表示方法,引入两种二型模糊集的模糊性度量作为图像分割质量的评判标准,构建图像分割质量评价模型。模拟实验验证了该模型的有效性和实用性。 相似文献
9.
Pushpinder SINGH 《Frontiers of Computer Science in China》2014,(5):741-752
In this paper, we propose some distance measures between type-2 fuzzy sets, and also a new family of utmost distance measures are presented. Several properties of differ- ent proposed distance measures have been introduced. Also, we have introduced a new ranking method for the ordering of type-2 fuzzy sets based on the proposed distance measure. The proposed ranking method satisfies the reasonable prop- erties for the ordering of fuzzy quantities. Some properties such as robustness, order relation have been presented. Lim- itations of existing ranking methods have been studied. Fur- ther for practical use, a new method for selecting the best alternative, for group decision making problems is proposed. This method is illustrated with a numerical example. 相似文献
10.
Pushpinder SINGH 《Frontiers of Computer Science》2014,8(5):741-752
In this paper, we propose some distance measures between type-2 fuzzy sets, and also a new family of utmost distance measures are presented. Several properties of different proposed distance measures have been introduced. Also, we have introduced a new ranking method for the ordering of type-2 fuzzy sets based on the proposed distance measure. The proposed ranking method satisfies the reasonable properties for the ordering of fuzzy quantities. Some properties such as robustness, order relation have been presented. Limitations of existing ranking methods have been studied. Further for practical use, a new method for selecting the best alternative, for group decision making problems is proposed. This method is illustrated with a numerical example. 相似文献
11.
This paper focuses on generating the optimal solutions of the solid transportation problem under fuzzy environment, in which the supply capacities, demands and transportation capacities are supposed to be type-2 fuzzy variables due to the instinctive imprecision. In order to model the problem within the framework of the credibility optimization, three types of new defuzzification criteria, i.e., optimistic value criterion, pessimistic value criterion and expected value criterion, are proposed for type-2 fuzzy variables. Then, the multi-fold fuzzy solid transportation problem is reformulated as the chance-constrained programming model with the least expected transportation cost. To solve the model, fuzzy simulation based tabu search algorithm is designed to seek approximate optimal solutions. Numerical experiments are implemented to illustrate the application and effectiveness of the proposed approaches. 相似文献
12.
As an undetachable module of type-2 (T2) fuzzy computations and reasoning, type-reduction methods play an important role in various fuzzy disciplines including fuzzy logic systems and fuzzy clustering. Importance of type-reduction techniques lies in the fact that they are the main tools for collecting the entire inherent vagueness of the data. Therefore, type-reduction methods form the output of type-2 fuzzy sets (T2 FSs) as the representative of the entire uncertainty in a given space. Hence, their accuracy, precision, and performance speed is of much interest. This paper, presents a comprehensive review on various type-reduction and defuzzification strategies for general and interval type-2 fuzzy sets and systems. It is tried to analyze the existing approaches from different point of views accompanied by extensive comparisons on different features of type-reduction methods to facilitate further research studies by the fuzzy community. 相似文献
13.
Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic 总被引:1,自引:0,他引:1
Uncertainty is an inherent part in control systems used in real world applications. The use of new methods for handling incomplete information is of fundamental importance. Type-1 fuzzy sets used in conventional fuzzy systems cannot fully handle the uncertainties present in control systems. Type-2 fuzzy sets that are used in type-2 fuzzy systems can handle such uncertainties in a better way because they provide us with more parameters and more design degrees of freedom. This paper deals with the design of control systems using type-2 fuzzy logic for minimizing the effects of uncertainty produced by the instrumentation elements, environmental noise, etc. The experimental results are divided in two classes, in the first class, simulations of a feedback control system for a non-linear plant using type-1 and type-2 fuzzy logic controllers are presented; a comparative analysis of the systems’ response in both cases was performed, with and without the presence of uncertainty. For the second class, a non-linear identification problem for time-series prediction is presented. Based on the experimental results the conclusion is that the best results are obtained using type-2 fuzzy systems. 相似文献
14.
S.T. Wang F.L. Chung Y.Y. Li D.W. Hu X.S. Wu 《Soft Computing - A Fusion of Foundations, Methodologies and Applications》2005,9(5):398-406
In this paper, a new selective feedback fuzzy neural network (SFNN) based on interval type-2 fuzzy logic systems is introduced by partitioning input and output spaces and based upon which a new FLS filter is further studied. The experimental results demonstrate that this new FLS filter outperforms other filters (e.g. the mean filter and the Wiener filter) in suppressing Gaussian noise and maintaining the original structure of an image. 相似文献
15.
Systematic design of a stable type-2 fuzzy logic controller 总被引:1,自引:0,他引:1
Stability is one of the more important aspects in the traditional knowledge of automatic control. Type-2 fuzzy logic is an emerging and promising area for achieving intelligent control (in this case, fuzzy control). In this work we use the fuzzy Lyapunov synthesis as proposed by Margaliot and Langholz [M. Margaliot, G. Langholz, New Approaches to Fuzzy Modeling and Control: Design and Analysis, World Scientific, Singapore, 2000] to build a Lyapunov stable type-1 fuzzy logic control system, and then we make an extension from a type-1 to a type-2 fuzzy logic control system, ensuring the stability on the control system and proving the robustness of the corresponding fuzzy controller. 相似文献
16.
In this paper, we investigate the fuzzy multi-attribute group decision making (FMAGDM) problems in which all the information provided by the decision makers (DMs) is expressed as the trapezoidal interval type-2 fuzzy sets (IT2 FS). We introduce the concepts of interval possibility mean value and present a new method for calculating the possibility degree of two trapezoidal IT2 FS. Then, we develop two aggregation techniques called the trapezoidal interval type-2 fuzzy geometric Bonferroni mean (TIT2FGBM) operator and the trapezoidal interval type-2 fuzzy weighted geometric Bonferroni mean (TIT2FWGBM) operator. We study its properties and discuss its special cases. Based on the TIT2FWGBM operator and the possibility degree, the method of FMAGDM with trapezoidal interval type-2 fuzzy information is proposed. Finally, an illustrative example is given to verify the developed approaches and to demonstrate their practicality and effectiveness. 相似文献
17.
Pythagorean fuzzy sets (PFSs) as a new generalization of fuzzy sets (FSs) can handle uncertain information more flexibly in the process of decision making. In our real life, we also may encounter a hesitant fuzzy environment. In view of the effective tool of hesitant fuzzy sets (HFSs) for expressing the hesitant situation, we introduce HFSs into PFSs and extend the existing research work of PFSs. Concretely speaking, this paper considers that the membership degree and the non-membership degree of PFSs are expressed as hesitant fuzzy elements. First, we propose a new concept of hesitant Pythagorean fuzzy sets (HPFSs) by combining PFSs with HFSs. It provides a new semantic interpretation for our evaluation. Meanwhile, the properties and the operators of HPFSs are studied in detail. For the sake of application, we focus on investigating the normalization method and the distance measures of HPFSs in advance. Then, we explore the application of HPFSs to multi-criteria decision making (MCDM) by employing the technique for order preference by similarity to ideal solution (TOPSIS) method. A new extension of TOPSIS method is further designed in the context of MCDM with HPFSs. Finally, an example of the energy project selection is presented to elaborate on the performance of our approach. 相似文献
18.
In this paper, we begin with a type-1 fuzzy logic system (FLS), trained with noisy data. We then demonstrate how information about the noise in the training data can be incorporated into a type-2 FLS, which can be used to obtain bounds within which the true (noisefree) output is likely to lie. We do this with the example of a one-step predictor for the Mackey–Glass chaotic time-series [M.C. Mackey, L. Glass, Oscillation and chaos in physiological control systems, Science 197 (1977) 287–280]. We also demonstrate how a type-2 FLS can be used to obtain better predictions than those obtained with a type-1 FLS. 相似文献
19.
In this study, a new approach for the formation of type-2 membership functions is introduced. The footprint of uncertainty is formed by using rectangular type-2 fuzzy granules and the resulting membership function is named as granular type-2 membership function. This new approach provides more degrees of freedom and design flexibility in type-2 fuzzy logic systems. Uncertainties on the grades of membership functions can be represented independently for any region in the universe of discourse and free of any functional form. So, the designer could produce nonlinear, discontinuous or hybrid membership functions in granular formation and therefore could model any desired discontinuity and nonlinearity. The effectiveness of the proposed granular type-2 membership functions is firstly demonstrated by simulations done on noise corrupted Mackey–Glass time series prediction. Secondly, flexible design feature of granular type-2 membership functions is illustrated by modeling a nonlinear system having dead zone with uncertain system parameters. The simulation results show that type-2 fuzzy logic systems formed by granular type-2 membership functions have more modeling capabilities than the systems using conventional type-2 membership functions and they are more robust to system parameter changes and noisy inputs. 相似文献
20.
This paper first proposes a type-2 neural fuzzy system (NFS) learned through its type-1 counterpart (T2NFS-T1) and then implements the built IT2NFS-T1 in a field-programmable gate array (FPGA) chip. The antecedent part of each fuzzy rule in the T2NFS-T1 uses interval type-2 fuzzy sets, while the consequent part uses a Takagi-Sugeno-Kang (TSK) type with interval combination weights. The T2NFS-T1 uses a simplified type-reduction operation to reduce system training time and hardware implementation cost. Given a training data set, a TSK type-1 NFS is first learned through structure and parameter learning. The built type-1 fuzzy logic system (FLS) is then extended to a type-2 FLS, where highly overlapped type-1 fuzzy sets are merged into interval type-2 fuzzy sets to reduce the total number of fuzzy sets. Finally, the rule consequent and antecedent parameters in the T2NFS-T1 are tuned using a hybrid of the gradient descent and rule-ordered recursive least square (RLS) algorithms. Simulation results and comparisons with various type-1 and type-2 FLSs verify the effectiveness and efficiency of the T2NFS-T1 for system modeling and prediction problems. A new hardware circuit using both parallel-processing and pipeline techniques is proposed to implement the learned T2NFS-T1 in an FPGA chip. The T2NFS-T1 chip reduces the hardware implementation cost in comparison to other type-2 fuzzy chips. 相似文献