首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As an effective image segmentation method, the standard fuzzy c-means (FCM) clustering algorithm is very sensitive to noise in images. Several modified FCM algorithms, using local spatial information, can overcome this problem to some degree. However, when the noise level in the image is high, these algorithms still cannot obtain satisfactory segmentation performance. In this paper, we introduce a non local spatial constraint term into the objective function of FCM and propose a fuzzy cmeans clustering algorithm with non local spatial information (FCM_NLS). FCM_NLS can deal more effectively with the image noise and preserve geometrical edges in the image. Performance evaluation experiments on synthetic and real images, especially magnetic resonance (MR) images, show that FCM_NLS is more robust than both the standard FCM and the modified FCM algorithms using local spatial information for noisy image segmentation.  相似文献   

2.
针对提花毛皮样片的花型识别技术,在HSI颜色模型下提出了一种基于空间信息的FCM图像分割算法。算法在HSI颜色模型下获得FCM算法的初始聚类中心,并采用了基于空间信息的模糊C均值聚类方法对图像进行分割。经C++编程验证,算法能有效去除花型图像中的噪声,获得较理想的花型识别结果。  相似文献   

3.
针对噪声图像模糊性的本质,提出了基于改进的直觉模糊核聚类的图像分割方法。采用直觉模糊集描述噪声图像包含的不确定性信息,将图像的灰度信息转换到直觉模糊域进行处理;将模糊核聚类拓展为直觉模糊核聚类,在图像的直觉模糊域进行聚类;通过高斯核函数和欧氏距离分别对像素8-邻域的灰度和空间信息进行建模,综合平衡灰度和空间信息对聚类的作用,并将其作为惩罚项加入到直觉模糊核聚类的目标函数中;通过梯度下降法,推导了迭代求解算法;通过典型的合成图像和自然图像分割实例,验证了所提算法的有效性和鲁棒性。  相似文献   

4.
The generalized fuzzy c-means clustering algorithm with improved fuzzy partition (GFCM) is a novel modified version of the fuzzy c-means clustering algorithm (FCM). GFCM under appropriate parameters can converge more rapidly than FCM. However, it is found that GFCM is sensitive to noise in gray images. In order to overcome GFCM?s sensitivity to noise in the image, a kernel version of GFCM with spatial information is proposed. In this method, first a term about the spatial constraints derived from the image is introduced into the objective function of GFCM, and then the kernel induced distance is adopted to substitute the Euclidean distance in the new objective function. Experimental results show that the proposed method behaves well in segmentation performance and convergence speed for gray images corrupted by noise.  相似文献   

5.
目的 为了进一步提高噪声图像分割的抗噪性和准确性,提出一种结合类内距离和类间距离的改进可能聚类算法并将其应用于图像分割。方法 该算法避免了传统可能性聚类分割算法中仅仅考虑以样本点到聚类中心的距离作为算法的测度,将类内距离与类间距离相结合作为算法的新测度,即考虑了类内紧密程度又考虑了类间离散程度,以便对不同的聚类结构有较强的稳定性和更好的抗噪能力,并且将直方图融入可能模糊聚类分割算法中提出快速可能模糊聚类分割算法,使其对各种较复杂图像的分割具有即时性。结果 通过人工合成图像和实际遥感图像分割测试结果表明,本文改进可能聚类算法是有效的,其分割轮廓清晰,分类准确且噪声较小,其误分率相比其他算法至少降低了2个百分点,同时能获得更满意的分割效果。结论 针对模糊C-均值聚类分割算法和可能性聚类分割算法对于背景和目标颜色相近的图像分类不准确的缺陷,将类内距离与类间距离相结合作为算法的测度有效的解决了图像分割归类问题,并且结合直方图提出快速可能模糊聚类分割算法使其对于大篇幅复杂图像也具有适用性。  相似文献   

6.
Suppressed fuzzy c-means clustering algorithm (S-FCM) is one of the most effective fuzzy clustering algorithms. Even if S-FCM has some advantages, some problems exist. First, it is unreasonable to compulsively modify the membership degree values for all the data points in each iteration step of S-FCM. Furthermore, duo to only utilizing the spatial information derived from the pixel’s neighborhood window to guide the process of image segmentation, S-FCM cannot obtain satisfactory segmentation results on images heavily corrupted by noise. This paper proposes an optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation to solve the above drawbacks of S-FCM. Firstly, an optimal-selection-based suppressed strategy is presented to modify the membership degree values for data points. In detail, during each iteration step, all the data points are ranked based on their biggest membership degree values, and then the membership degree values of the top r ranked data points are modified while the membership degree values of the other data points are not changed. In this paper, the parameter r is determined by the golden section method. Secondly, a novel gray level histogram is constructed by using the self-tuning non local spatial information for each pixel, and then fuzzy c-means clustering algorithm with the optimal-selection-based suppressed strategy is executed on this histogram. The self-tuning non local spatial information of a pixel is derived from the pixels with a similar neighborhood configuration to the given pixel and can preserve more information of the image than the spatial information derived from the pixel’s neighborhood window. This method is applied to Berkeley and other real images heavily contaminated by noise. The image segmentation experiments demonstrate the superiority of the proposed method over other fuzzy algorithms.  相似文献   

7.
冯飞  刘培学  李丽  陈玉杰 《计算机科学》2018,45(Z6):252-254
医学图像由于具有复杂性,在对其进行图像分割时存在很大的不确定性,为了提高模糊c均值聚类算法(FCM)在处理医学图像分割时的性能,提出一种新的混合方法进行图像分割。利用FCM算法将图像像素分成均匀的区域,融合引力搜索算法,将改进的引力搜索算法纳入模糊c均值聚类算法中,以找到最优聚类中心,使模糊c均值聚类的适应度函数值最小,从而提高分割效果。实验结果表明,相对于传统的聚类算法,所提算法在分割复杂的医学图像方面更具有效性。  相似文献   

8.
In this paper, we propose an improvement method for image segmentation using the fuzzy c-means clustering algorithm (FCM). This algorithm is widely experimented in the field of image segmentation with very successful results. In this work, we suggest further improving these results by acting at three different levels. The first is related to the fuzzy c-means algorithm itself by improving the initialization step using a metaheuristic optimization. The second level is concerned with the integration of the spatial gray-level information of the image in the clustering segmentation process and the use of Mahalanobis distance to reduce the influence of the geometrical shape of the different classes. The final level corresponds to refining the segmentation results by correcting the errors of clustering by reallocating the potentially misclassified pixels. The proposed method, named improved spatial fuzzy c-means IFCMS, was evaluated on several test images including both synthetic images and simulated brain MRI images from the McConnell Brain Imaging Center (BrainWeb) database. This method is compared to the most used FCM-based algorithms of the literature. The results demonstrate the efficiency of the ideas presented.  相似文献   

9.
基于灰度空间特征的模糊C均值聚类图像分割   总被引:12,自引:0,他引:12  
李云松  李明 《计算机工程与设计》2007,28(6):1358-1360,1363
模糊C均值(FCM)聚类算法广泛用于图像的自动分割,但是该算法没有考虑像素的灰度和空间特征,对噪声十分敏感.因此提出一种改进的算法,在传统的FCM聚类的基础上,运用邻域像素的灰度相似度和聚类分布统计来构造新的隶属函数,对图像进行聚类分割.该方法不仅有效地抑制了噪声的干扰,而且把错分类的像素很容易的纠正过来.对两种类型的含噪图像的实验结果表明该方法对噪声具有很强的鲁棒性和对像素聚类的正确性.  相似文献   

10.
An image segmentation method based on optimized spatial texture information is proposed in this article. Spatial information, including the relative position of neighbouring pixels and texture features of the multiscale neighbourhood, is incorporated into the similarity measure of the fuzzy c-means (FCM) clustering algorithm, in which the Gaussian kernel is adopted to diminish the local incorrect segmentation. The FCM clustering is spatially adjusted and optimized by the particle swarm optimization (PSO) algorithm. The purpose of optimization is to obtain the appropriate control parameters influencing spatial information, which can improve segmentation results. Experimental results demonstrate that the proposed method achieves better segmentation performance and is capable of effectively segmenting synthetic images and synthetic aperture radar (SAR) images.  相似文献   

11.
模糊C均值聚类是一种有效的图像分割方法, 但存在因忽略空间上下文信息和结构信息而易为噪声所干扰的现象. 为此提出了DCT子空间的邻域加权模糊C均值聚类方法. 该方法首先结合分块的思想, 对图像块进行离散余弦变换(discrete cosine transform,DCT), 建立了一个基于图像块局部信息的相似性度量模型; 然后定义目标函数中的欧式距离为邻域加权距离; 最后将该方法应用于加噪的人工合成图像、自然图像和MR图像. 实验结果表明, 该方法能够获得较好的分割效果, 同时具有较强的抗噪性.  相似文献   

12.
This paper presents an adaptive spatial information-theoretic fuzzy clustering algorithm to improve the robustness of the conventional fuzzy c-means (FCM) clustering algorithms for image segmentation. This is achieved through the incorporation of information-theoretic framework into the FCM-type algorithms. By combining these two concepts and modifying the objective function of the FCM algorithm, we are able to solve the problems of sensitivity to noisy data and the lack of spatial information, and improve the image segmentation results. The experimental results have shown that this robust clustering algorithm is useful for MRI brain image segmentation and it yields better segmentation results when compared to the conventional FCM approach.  相似文献   

13.
标准模糊C均值聚类算法由于没有考虑任何与图像空间连续性有关的信息,对噪声高度敏感,针对这一问题,提出一种基于图像空间信息的FCM聚类分割算法。该算法将图像像素的空间信息引入到相似性度量和隶属度函数中,其中空间信息由像素的相对位置和邻域内像素的特征决定。实验结果证明,该方法能有效地对含有一定噪声的图像进行分割,具有较好的抗噪性能。  相似文献   

14.
In this paper, the automatic segmentation of a multispectral magnetic resonance image of the brain is posed as a clustering problem in the intensity space. The automatic clustering problem is thereafter modelled as solving a multiobjective optimization (MOO) problem, optimizing a set of cluster validity indices simultaneously. A multiobjective clustering technique, named MCMOClust, is used to solve this problem. MCMOClust utilizes a recently developed simulated annealing based multiobjective optimization method as the underlying optimization strategy. Each cluster is divided into several small hyperspherical subclusters and the centers of all these small sub-clusters are encoded in a string to represent the whole clustering. For assigning points to different clusters, these local sub-clusters are considered individually. For the purpose of objective function evaluation, these sub-clusters are merged appropriately to form a variable number of global clusters. Two cluster validity indices, one based on the Euclidean distance, XB-index, and another recently developed point symmetry distance based cluster validity index, Sym-index, are optimized simultaneously to automatically evolve the appropriate number of clusters present in MR brain images. A semi-supervised method is used to select a single solution from the final Pareto optimal front of MCMOClust. The present method is applied on several simulated T1-weighted, T2-weighted and proton density normal and MS lesion magnetic resonance brain images. Superiority of the present method over Fuzzy C-means, Expectation Maximization clustering algorithms and a newly developed symmetry based fuzzy genetic clustering technique (Fuzzy-VGAPS), are demonstrated quantitatively. The automatic segmentation obtained by multiseed based multiobjective clustering technique (MCMOClust) is also compared with the available ground truth information.  相似文献   

15.
基于改进的FCM的人脑MR图像分割   总被引:2,自引:0,他引:2  
传统模糊C均值广泛应用于图像分割,它是一种经典的模棚聚类分析方法,但是FCM算法对于初始值的选择都是采取随机的方法,强烈依赖于初始值的选择,收敛结果容易陷入局部最小值,并且FCM并没有考虑图像的空间信息,因而对噪声十分敏感。提出改进的FCM方法,采用新的方法确定初始值的选择,然后考虑空间信息,利用Gibbs随机场的性质引入先验邻域约束信息,重新确定像素的模糊隶属度值,同时再进一步地调整距离矩阵。通过实验可以表明,此改进的方法具有很好的分割效果,同时对噪声具有较强的鲁棒性。  相似文献   

16.
In this article, a segmentation approach for cloud detection in Meteosat Second Generation (MSG) multispectral images is proposed. The proposed algorithm uses recursive segmentation that dynamically reduces the number of classes. This algorithm consists of two steps. First, an initial segmentation of the image is obtained using local fuzzy clustering. The clustering algorithm is formulated by modifying the similarity measure of the standard fuzzy c-means (FCM) algorithm. The new similarity function includes the spectral information as well as the homogeneity and spatial clustering information of each considered pixel. In the second step, a hierarchical region-merging process is used to reduce the number of image clusters. At each iteration, the segmentation algorithm proceeds with a new partition until the final result of the segmentation is obtained. The proposed method has been tested using synthetic and MSG images. It yields a compact and coherent segmentation map, with a satisfactory reproduction of the image contours. Moreover, the different types of clouds are well detected and separated with appropriate accuracy.  相似文献   

17.
Automated segmentation of images has been considered an important intermediate processing task to extract semantic meaning from pixels. In general, the fuzzy c-means approach (FCM) is highly effective for image segmentation. But for the conventional FCM image segmentation algorithm, cluster assignment is based solely on the distribution of pixel attributes in the feature space, and the spatial distribution of pixels in an image is not taken into consideration. In this paper, we present a novel FCM image segmentation scheme by utilizing local contextual information and the high inter-pixel correlation inherent. Firstly, a local spatial similarity measure model is established, and the initial clustering center and initial membership are determined adaptively based on local spatial similarity measure model. Secondly, the fuzzy membership function is modified according to the high inter-pixel correlation inherent. Finally, the image is segmented by using the modified FCM algorithm. Experimental results showed the proposed method achieves competitive segmentation results compared to other FCM-based methods, and is in general faster.  相似文献   

18.
In this paper, we propose a robust region-based active contour model driven by fuzzy c-means energy that draws upon the clustering intensity information for fast image segmentation. The main idea of fuzzy c-means energy is to quickly compute the two types of cluster center functions for all points in image domain by fuzzy c-means algorithm locally with a proper preprocessing procedure before the curve starts to evolve. The time-consuming local fitting functions in traditional models are substituted with these two functions. Furthermore, a sign function and a Gaussian filtering function are utilized to replace the penalty term and the length term in most models, respectively. Experiments on several synthetic and real images have proved that the proposed model can segment images with intensity inhomogeneity efficiently and precisely. Moreover, the proposed model has a good robustness on initial contour, parameters and different kinds of noise.  相似文献   

19.
在经典的融合空间信息的模糊聚类图像分割方法中,图像像素的空间信息大,都采用正方形的邻域窗来获取。为了更好地分割出图像中的边界及细节信息,对不同形状邻域空间信息的模糊聚类图像分割进行了研究。在该方法中,首先采用圆形、三角形和菱形邻域窗获得图像像素的空间信息,然后分别将这三种空间信息引入到融合空间信息的模糊聚类图像分割中。Berkeley图像上的分割实验表明分别采用圆形、三角形和菱形邻域窗获得图像像素空间信息的模糊聚类图像分割方法在分割性能上要优于融合正方形邻域窗空间信息的方法。  相似文献   

20.
Spatial information enhances the quality of clustering which is not utilized in the conventional FCM. Normally fuzzy c-mean (FCM) algorithm is not used for color image segmentation and also it is not robust against noise. In this paper, we presented a modified version of fuzzy c-means (FCM) algorithm that incorporates spatial information into the membership function for clustering of color images A progressive technique based on SOM is used to automatically find the number of optimal clusters. The results show that our technique outperforms state-of-the art methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号