首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All mobile bases suffer from localization errors. Previous approaches to accommodate for localization errors either use external sensors such as lasers or sonars, or use internal sensors like encoders. An encoder’s information is integrated to derive the robot’s position; this is called odometry. A combination of external and internal sensors will ultimately solve the localization error problem, but this paper focuses only on processing the odometry information. We solve the localization problem by forming a new odometry error model for the synchro-drive robot then use a novel procedure to accurately estimate the error parameters of the odometry error model. This new procedure drives the robot through a known path and then uses the shape of the resulting path to estimate the model parameters. Experimental results validate that the proposed method precisely estimates the error parameters and that the derived odometry error model of the synchro-drive robot is correct. Nakju Lett Doh received his BS, his MS, and his Ph.D. degree in Mechanical Engineering from Pohang University of Science and Technology (POSTECH), KOREA, in 1998, 2000, and 2005, respectively. Since then, he is a senior researcher in Intellgient Robot Reserarch Division, Electronics and Telecommunications Research Institute (ETRI), KOREA. He received the glod prize in Intelligent Robot Contest hosted by Northern KyoungSang Province at 2000 and the gold prize in Humantech Thesis Competition hosted by Samsung Electronics at 2005. In 2003, he got the best student paper award in IEEE International Conference on Robotics and Automation held in Taiwan. His research interests are the localization and navigation of mobile robots and ubiquitous robotic space for intelligent robot navigation. Howie Choset is an Associate Professor of Robotics at Carnegie Mellon University where he conducts research in motion planning and design of serpentine mechanisms, coverage path planning for de-mining and painting, mobile robot sensor based exploration of unknown spaces, and education with robotics. In 1997, the National Science Foundation awarded Choset its Career Award to develop motion planning strategies for arbitrarily shaped objects. In 1999, the Office of Naval Research started supporting Choset through its Young Investigator Program to develop strategies to search for land and sea mines. Recently, the MIT Technology Review elected Choset as one of its top 100 innovators in the world under 35. Choset directs the Undergraduate Robotics Minor at Carnegie Mellon and teaches an overview course on Robotics which uses series of custom developed Lego Labs to complement the course work. Professor Choset’s students have won best paper awards at the RIA in 1999 and ICRA in 2003. Finally, Choset is a member of an urban search and rescue response team using robots with the Center for Robot Assisted Search and Rescue. Now, he is active in extending the mechanism design and path planning work to medical mechatronics. Wan Kyun Chung received his BS degree in Mechanical Design from Seoul National University in 1981, his MS degree in Mechanical Engineering from KAIST in 1983, and his Ph.D. in Production Engineering from KAIST in 1987. He is Professor in the school of Mechanical Engineering, POSTECH (he joined the faculty in 1987). In 1988, he was a visiting professor at the Robotics Institute of Carnegie-Mellon University. In 1995 he was a visiting scholar at the university of California, Berkeley. His research interests include the localization and navigation for mobile robots, underwater robots and development of robust controller for precision motion control. He is a director of National Research Laboratory for Intelligent Mobile Robot Navigation. He is serving as an Associate Editor for IEEE Tr. on Robotics, international editorial board for Advanced Robotics.  相似文献   

2.
As service robots and other ubiquitous technology have evolved, an increasing need for the autonomous navigation of mobile objects has arisen. In a large number of localization schemes, the absolute-position estimation method, which relies on navigation beacons or landmarks, has been widely used as it has the advantages of being economical and accurate. However, only a few of these schemes have expanded their application to complicated workspaces, or those that have many rooms or blocks. As the navigation of mobile objects in complicated workspaces is vital for ubiquitous technology, multiblock navigation is necessary. This article presents methodologies and techniques for the multiblock navigation of the indoor localization system with active beacon sensors. This new indoor localization system design includes ultrasonic attenuation compensation, dilution-of-precision analysis, and a fault detection and isolation algorithm using redundant measurements. This work was presented in part at the 13th International Symposium on Artificial Life and Robotics, Oita, Japan, January 31–February 2, 2008  相似文献   

3.
Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability.  相似文献   

4.
Owing to the upcoming applications in the field of service robotics mobile robots are currently receiving increasing attention in industry and the scientific community. Applications in the area of service robotics demand a high degree of system autonomy, which robots without learning capabilities will not be able to meet. Learning is required in the context of action models and appropriate perception procedures. In both areas flexible adaptivity is difficult to achieve especially when high bandwidth sensors (e.g. video cameras) - which are needed in the envisioned unstructured worlds - are used. This paper proposes a new methodology for image-based navigation using a self-organized visual representation of the environment. Self-organization leads to internal representations, which can be used by the robot, but are not transparent to the user. It is shown how this conceptual gap can be bridged.  相似文献   

5.
Robot navigation in unknown environments requires an efficient exploration method. Exploration involves not only to determine towards the robot must to move but also motion planning, and simultaneous localization and mapping processes. The final goal of the exploration task is to build a map of the environment that previously the robot didn’t know. This work proposes the Voronoi Fast Marching method, that uses a Fast Marching technique on the Logarithm of the Extended Voronoi Transform of the environment’s image provided by sensors, to determine a motion plan. The Logarithm of the Extended Voronoi Transform imitates the repulsive electric potential from walls and obstacles, and the Fast Marching Method propagates a wave over that potential map. The trajectory is calculated by the gradient method. The robot is directed towards the most unexplored and free zones of the environment so as to be able to explore all the workspace. Finally, to build the environment map while the robot is carrying out the exploration task, a SLAM (Simultaneous Localization and Modelling)algorithm is implemented, the Evolutive Localization Filter (ELF) based on a differential evolution technique. The combination of these methods provide a new autonomous exploration strategy to construct consistent maps of 2D and 3D indoor environments.  相似文献   

6.
In this paper, a landmark selection and tracking approach is presented for mobile robot navigation in natural environments, using textural distinctiveness-based saliency detection and spatial information acquired from stereo data. The presented method focuses on achieving high robustness of tracking rather than self-positioning accuracy. The landmark selection method is designed to select a small amount of the most salient feature points in a wide variety of sparse unknown environments to ensure successful matching. Landmarks are selected by an iterative algorithm from a textural distinctiveness-based saliency map extended with spatial information, where a repulsive potential field is created around the position of each already selected landmark for better distribution in order to increase robustness. The template matching of landmarks is aided with visual odometry-based motion estimation. Other robustness increasing strategies includes estimating landmark positions by unscented Kalman filters as well as from surrounding landmarks. Experimental results show that the introduced method is robust and suitable for natural environments.  相似文献   

7.
In order to solve most of the existing mobile robotics applications, the robot needs some information about its spatial environment encoded in what it has been commonly called a map. The knowledge contained in such a map, whatever approach is used to obtain it, will mainly be used by the robot to gain the ability to navigate in a given environment. We are describing in this paper, a method that allows a robot or team of robots to navigate in large urban areas for which an existing map in a standard human understandable fashion is available. As detailed maps of most urban areas already exist, it will be assumed that a map of the zone where the robot is supposed to work is given, which has not been constructed using the robot’s own sensors. We propose in this paper, the use of an existing Geographical Information System based map of an urban zone so that a robot or a team of robots can connect to this map and use it for navigation purposes. Details of the implemented system architecture as well as a position tracking experiment in a real outdoor environment, a University Campus, are provided.  相似文献   

8.
As the autonomy of personal service robotic systems increases so has their need to interact with their environment. The most basic interaction a robotic agent may have with its environment is to sense and navigate through it. For many applications it is not usually practical to provide robots in advance with valid geometric models of their environment. The robot will need to create these models by moving around and sensing the environment, while minimizing the complexity of the required sensing hardware. Here, an information-based iterative algorithm is proposed to plan the robot's visual exploration strategy, enabling it to most efficiently build a graph model of its environment. The algorithm is based on determining the information present in sub-regions of a 2-D panoramic image of the environment from the robot's current location using a single camera fixed on the mobile robot. Using a metric based on Shannon's information theory, the algorithm determines potential locations of nodes from which to further image the environment. Using a feature tracking process, the algorithm helps navigate the robot to each new node, where the imaging process is repeated. A Mellin transform and tracking process is used to guide the robot back to a previous node. This imaging, evaluation, branching and retracing its steps continues until the robot has mapped the environment to a pre-specified level of detail. The set of nodes and the images taken at each node are combined into a graph to model the environment. By tracing its path from node to node, a service robot can navigate around its environment. This method is particularly well suited for flat-floored environments. Experimental results show the effectiveness of this algorithm.  相似文献   

9.
Most localization algorithms are either range-based or vision-based, but the use of only one type of sensor cannot often ensure successful localization. This paper proposes a particle filter-based localization method that combines the range information obtained from a low-cost IR scanner with the SIFT-based visual information obtained from a monocular camera to robustly estimate the robot pose. The rough estimation of the robot pose by the range sensor can be compensated by the visual information given by the camera and the slow visual object recognition can be overcome by the frequent updates of the range information. Although the bandwidths of the two sensors are different, they can be synchronized by using the encoder information of the mobile robot. Therefore, all data from both sensors are used to estimate the robot pose without time delay and the samples used for estimating the robot pose converge faster than those from either range-based or vision-based localization. This paper also suggests a method for evaluating the state of localization based on the normalized probability of a vision sensor model. Various experiments show that the proposed algorithm can reliably estimate the robot pose in various indoor environments and can recover the robot pose upon incorrect localization. Recommended by Editorial Board member Sooyong Lee under the direction of Editor Hyun Seok Yang. This research was conducted by the Intelligent Robotics Development Program, one of the 21st Century Frontier R&D Programs funded by the Ministry of Knowledge Economy of Korea. Yong-Ju Lee received the B.S. degree in Mechanical Engineering from Korea University in 2004. He is now a Student for Ph.D. of Mechanical Engineering from Korea University. His research interests include mobile robotics. Byung-Doo Yim received the B.S. degree in Control and Instrumentation Engineering from Seoul National University of Technology in 2005. Also, he received the M.S. degree in Mechatroncis Engineering from Korea University in 2007. His research interests include mobile robotics. Jae-Bok Song received the B.S. and M.S. degrees in Mechanical Engineering from Seoul National University in 1983 and 1985, respectively. Also, he received the Ph.D. degree in Mechanical Engineering from MIT in 1992. He is currently a Professor of Mechanical Engineering, Korea University, where he is also the Director of the Intelligent Robotics Laboratory from 1993. His current research interests lie mainly in mobile robotics, safe robot arms, and design/control of intelligent robotic systems.  相似文献   

10.
Joint simultaneous localization and mapping (SLAM) constitutes the basis for cooperative action in multi‐robot teams. We designed a stereo vision‐based 6D SLAM system combining local and global methods to benefit from their particular advantages: (1) Decoupled local reference filters on each robot for real‐time, long‐term stable state estimation required for stabilization, control and fast obstacle avoidance; (2) Online graph optimization with a novel graph topology and intra‐ as well as inter‐robot loop closures through an improved submap matching method to provide global multi‐robot pose and map estimates; (3) Distribution of the processing of high‐frequency and high‐bandwidth measurements enabling the exchange of aggregated and thus compacted map data. As a result, we gain robustness with respect to communication losses between robots. We evaluated our improved map matcher on simulated and real‐world datasets and present our full system in five real‐world multi‐robot experiments in areas of up 3,000 m2 (bounding box), including visual robot detections and submap matches as loop‐closure constraints. Further, we demonstrate its application to autonomous multi‐robot exploration in a challenging rough‐terrain environment at a Moon‐analogue site located on a volcano.  相似文献   

11.
The distribution of environmental features of the internal ruins which are formed by a randomly seismic disaster is unpredictable. Therefore, the existing methods of map segmentation, which need to preset parameters, cannot be directly used. Considering the lack of prior knowledge, a map segmentation method based on the spectral clustering is proposed in the framework of hierarchical simultaneous localization and mapping (SLAM) algorithm. The method solves the problem of incremental complexity of SLAM algorithm using the division of environment. In accordance with the similarity of observed environment, a weighted graph is established. The nodes in the graph are generated by measuring the expected information gain and position redundancy. Then, the graph is partitioned into subjective results of map segment based on the criterion of minimum normalized cut. On the basis of the inherent sparse of SLAM, the proposed algorithm not only reduces the cost of calculation, but also minimizes the loss of information in order to ensure the global consistency. Finally, the feasibility and effectiveness of the algorithm are verified by simulation and experiment.  相似文献   

12.
This paper presents a probabilistic approach for sensor-based localization with weak sensor data. Wireless received signal strength measurements are used to disambiguate sonar measurements in symmetric environments. Particle filters are used to model the multi-hypothesis estimation problem. Experiments indicate that multiple weak cues can provide robust position estimates and that multiple sensors also aid in solving the kidnapped robot problem.  相似文献   

13.
This paper presents a new approach to obstacle avoidance for mobile robots in cluttered and unknown or partially unknown environments. The method combines a new directional method, called beam method (BM), to improve the performance of a local obstacle avoidance approach called curvature velocity method (CVM). BM calculates the best one-step heading which is used by CVM to obtain the optimal linear and angular velocities. The resulting combined technique is called beam curvature method (BCM).

Different experiments in populated and dynamic environments have proved to be very successful. The method is able to guide the robot safely and efficiently during long time periods. We present some of these results compared with other methods.  相似文献   


14.
在标准FastSLAM中,随着重采样次数的增加会出现十分严重的粒子退化现象,从而导致机器人位姿估计的一致性很差.针对FastSLAM算法的这一缺陷,提出一种改进的FastSLAM算法.此算法在标准FastSLAM的重采样条件判断中,额外考虑了粒子权重协方差和每个粒子的测量残余一致性,并且使用指数等级选择算法进行新粒子的生成.通过仿真实验可以看出,改进的FastSLAM算法不但可以明显地提高机器人位姿估计的一致性,而且能够很好地保持粒子多样性.  相似文献   

15.
Compared with a single robot, Multi-robot Systems (MRSs) can undertake more challenging tasks in complex scenarios benefiting from the increased transportation capacity and fault tolerance. This paper presents a hierarchical framework for multi-robot navigation and formation in unknown environments with static and dynamic obstacles, where the robots compute and maintain the optimized formation while making progress to the target together. In the proposed framework, each single robot is capable of navigating to the global target in unknown environments based on its local perception, and only limited communication among robots is required to obtain the optimal formation. Accordingly, three modules are included in this framework. Firstly, we design a learning network based on Deep Deterministic Policy Gradient (DDPG) to address the global navigation task for single robot, which derives end-to-end policies that map the robot’s local perception into its velocity commands. To handle complex obstacle distributions (e.g. narrow/zigzag passage and local minimum) and stabilize the training process, strategies of Curriculum Learning (CL) and Reward Shaping (RS) are combined. Secondly, for an expected formation, its real-time configuration is optimized by a distributed optimization. This configuration considers surrounding obstacles and current formation status, and provides each robot with its formation target. Finally, a velocity adjustment method considering the robot kinematics is designed which adjusts the navigation velocity of each robot according to its formation target, making all the robots navigate to their targets while maintaining the expected formation. This framework allows for formation online reconfiguration and is scalable with the number of robots. Extensive simulations and 3-D evaluations verify that our method can navigate the MRS in unknown environments while maintaining the optimal formation.  相似文献   

16.
This paper describes a method of robustly modeling road boundaries on-line for autonomous navigation. Since sensory evidence for road boundaries might change from place to place, we cannot depend on a single cue but have to use multiple sensory features. It is also necessary to cope with various road shapes and road type changes. These requirements are naturally met in the proposed particle filter-based method, which makes use of multiple features with the corresponding likelihood functions and keeps multiple road hypotheses as particles. The proposed method has been successfully applied to various road scenes with cameras and a laser range finder. To show that the proposed method is applicable to other sensors, preliminary results of using stereo instead of the laser range finder are also described.  相似文献   

17.
海丹  李勇  张辉  李迅 《智能系统学报》2010,5(5):425-431
定位问题是移动机器人研究领域中最基本的问题,在Bayes的框架下研究了机器人与无线传感器网络(WSN)组成系统中的同时建图与定位问题(SLAM).针对该系统中只存在距离测量信息可用的情况提出了一种基于粒子滤波的SLAM算法.该方法将机器人状态和节点位置估计设置为一组全局估计粒子,通过对粒子及其权重的更新来计算整个系统的状态.算法将WSN节点的位置估计在机器人的路径上分解为相互独立的估计,从而将全局粒子的计算转化为使用一个机器人状态滤波器和对应于每个机器人粒子的节点位置滤波器进行计算.针对观测信息低维的特点,设计了处理低维观测信息的方法,使得观测信息可以在滤波阶段得到合理利用.并且详细介绍了提出的SLAM算法原理和计算过程,并通过仿真实验证明了算法的有效性和实用性.  相似文献   

18.
An obstacle-avoidance algorithm is presented for autonomous mobile robots equipped with a CCD camera and ultrasonic sensors. This approach uses segmentation techniques to segregate the floor from other fixtures, and measurement techniques to measure the distance between the mobile robot and any obstacles. It uses a simple computation for the selection of a threshold value. This approach also uses a cost function, which is combined with image information, distance information, and a weight factor, to find an obstacle-free path. This algorithm, which uses a CCD camera and ultrasonic sensors, can be used for cases including shadow regions, and obstacles in visual navigation and in various lighting conditions. This work was presented in part at the 7th International Symposium on Artificial Life and Robotics, Oita, Japan, January 16–18, 2002  相似文献   

19.
Shared use of mobile devices is increasingly prevalent in both research prototypes and in practice, however, little is known as to how to support best this interaction paradigm. In this paper, we present a study examining how pairs share a single mobile phone during a collaborative wayfinding activity. We provide a classification of strategies, role relationships and phone interactions employed to conduct the wayfinding activities in our study. While acknowledging that the factors determining how the phone was shared are nuanced and intertwined, our results illustrate how differences in the mobile application’s interface influenced shared use, wayfinding strategy and outcome.
Derek ReillyEmail:
  相似文献   

20.
Artificial navigation systems stand to benefit greatly from learning maps of visual environments, but traditional map-making techniques are inadequate in several respects. This paper describes an adaptive, view-based, relational map-making system for navigating within a 3D environment defined by a spatially distributed set of visual landmarks. Inspired by an analogy to learning aspect graphs of 3D objects, the system comprises two neurocomputational architectures that emulate cognitive mapping in the rat hippocampus. The first architecture performs unsupervised place learning by combining the “What” with the “Where”, namely through conjunctions of landmark identity, pose, and egocentric gaze direction within a local, restricted sensory view of the environment. The second associatively learns action consequences by incorporating the “When”, namely through conjunctions of learned places and coarsely coded robot motions. Together, these networks form a map reminiscent of a partially observable Markov decision process, and consequently provide an ideal neural substrate for prediction, environment recognition, route planning, and exploration. Preliminary results from real-time implementations on a mobile robot called MAVIN (the Mobile Adaptive VIsual Navigator) demonstrate the potential for these capabilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号